Деформация растяжения сжатия закон гука
Содержание статьи
Техническая механика
Сопротивление материалов
Деформации при растяжении и сжатии
Продольные деформации при растяжении и сжатии
Характер деформаций, которым подвергается прямой брус при растяжении или сжатии мы определили, проведя опыт с резиновым брусом, на котором была нанесена сетка линий.
Теперь представим себе брус постоянного сечения имеющий длину l, один из концов которого защемлен, а к свободному концу приложена растягивающая сила F. Под действием этой силы брус удлинится на некоторую величину Δl, которую назовем абсолютным удлинением бруса.
Отношение абсолютного удлинения Δl к первоначальной длине бруса l назовем относительным удлинением и обозначим ε:
ε = Δl / l
Относительное удлинение – величина безразмерная, иногда его выражают в процентах.
Итак, деформация бруса при растяжении и сжатии характеризуется абсолютным и относительным удлинением или укорочением.
***
Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.
Математически эта зависимость записывается так:
σ = E ε.
Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода.
Модуль упругости, как и напряжение, выражаются в паскалях (Па).
Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00…1,30) х 105 МПа и т. д.
Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А, то можно получить следующую зависимость:
Δl = Nl / (EА).
Произведение модуля упругости на площадь сечения Е&s;А, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.
Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение ЕА / l называют жесткостью бруса при растяжении и сжатии.
Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:
Δl = Σ (Δli)
***
Поперечные деформации при растяжении и сжатии
Описанный ранее опыт с резиновым брусом, на котором нанесена сетка линий, показал, что при растяжении поперечные размеры бруса уменьшаются, а при сжатии – увеличиваются, т. е. брус становится либо тоньше, либо толще. Это явление характерно для брусьев, изготовленных из всех материалов.
Опытным путем установлено, что при одноосном растяжении или сжатии отношение относительных поперечной и продольной деформаций для данного материала – величина постоянная.
Впервые на эту зависимость указал французский ученый С. Пуассон (1781-1840 г.г.) и математически она записывается так:
|ε1| = ν |ε|,
где ν – коэффициент поперечной деформации, называемый коэффициентом Пуассона.
Коэффициент Пуассона является безразмерной величиной, и характеризует упругие свойства материала. При растяжении и сжатии этот коэффициент принимается одинаковым.
Значения коэффициента Пуассона для разных материалов установлены опытным путем и их величины можно найти в соответствующих справочниках.
***
Потенциальная энергия деформации при растяжении
При статическом (медленном) растяжении образца растягивающая сила F возрастает от нуля до какого-то значения, удлиняет образец на величину Δl и при этом совершает работу W.
Эта работа аккумулируется в деформируемом образце в виде потенциальной энергии деформации U, причем, пренебрегая незначительными потерями энергии (например, тепловыми), можно считать, что W = U.
Путем изучения диаграмм растяжения образцов, установлено, что потенциальная энергия упругой деформации стержня длиной l постоянного поперечного сечения А при одинаковой во всех сечениях продольной силе N = F будет равна:
U = W = F Δl / 2 = N2 l / (2E А)
Сопротивление материалов оперирует, также, таким понятием, как удельная потенциальная энергия деформации, которая подсчитывается, как потенциальная энергия, приходящаяся на единицу объема бруса.
При одновременном действии растягивающих и сжимающих нагрузок или ступенчатом изменении размеров поперечного сечения бруса, его разбивают на однородные участки и для каждого подсчитывают потенциальную энергию деформации. Потенциальную энергию деформации всего бруса определяют, как сумму потенциальных энергий отдельных участков.
Анализируя формулу потенциальной энергии деформации можно сделать вывод, что эта величина всегда положительная, поскольку в ее выражения входят квадраты линейных и силовых величин. По этой причине при вычислении потенциальной энергии деформации нельзя применять принцип независимости действия сил (поскольку квадрат суммы не равен сумме квадратов слагаемых).
Единицей измерения потенциальной энергии деформации, как и работы, является джоуль (Дж).
***
Материалы раздела «Растяжение и сжатие»:
- Основные понятия о деформации растяжения и сжатия.
- Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.
Смятие
Правильные ответы на вопросы Теста № 5
№ вопроса | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Правильный вариант ответа | 3 | 3 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 1 |
Источник
Закон Гука [в понятной форме]
Обычно при изучении закон Гука не вызывает особых сложностей. Запомнить, что деформация в упругом теле пропорциональна приложенной к нему силе, совсем не сложно.
Чаще всего, этого знания вполне достаточно для школьного курса, чтобы забыть про Гука навсегда :)… Чтобы он лучше запомнился, глянем на портрет.
Однако, если вы изучаете физику по углубленной программе или если ваш преподаватель хочет добиться демонстрации понимания этого закона на более высоком уровне, то сказанного явно недостаточно. Кроме того, при поступлении в технический институт, знаний этих тоже мало. Ведь на законе Гука держится великий и ужасный сопромат! Да и при изучении механики — это один из самых важных законов.
Давайте изложим основные постулаты Гука в простой и понятной читателю форме, ну а если вопросы останутся — пишем их в комментариях или в личку.
Введение и основные понятия
Наверняка вы в детстве играли с такой штукой, которая называется лук со стрелами. Принцип работы этого устройства очень прост. Есть согнутая палка, чаще всего из ивы, и есть тетива, которая связывает концы палки. Когда мы натягиваем тетиву стрелой, то сила упругости палки заставляет её возвращаться к прежнему состоянию и передавать энергию стреле.
Как вы догадываетесь, ключевое слово тут — сила упругости. Это такая сила, которая возникает в теле при попытке это тело согнуть или изменить его форму, то есть деформировать. Кстати, про силу полезно прочитать вот это. Обусловлена она внутренним взаимодействием частичек.
И тут тоже появилось новое слово — деформация. Думаю, пояснять что это такое, не нужно.
А вот сказать, что деформация бывает обратимая (упругая) и необратимая, важно. Ведь закон Гука работает в случаях существования упругой деформации.
Упругая деформация — это такая деформация, после которой тело возвращается к своим первоначальным геометрическим характеристикам, после снятия внешнего воздействия.
Простейшие виды деформации — это растяжение и сжатие. Сразу вспоминаем пружину. Ну и в учебнике физики вы как раз-таки встретите закон Гука, который раскрывается на примере пружины.
Формулировка закона Гука
Формулируется закон так:
Деформация, возникающая в упругом теле, пропорциональна приложенной к этому телу силе.
Если записывать его в виде формулы, то имеем следующее:
F = -kx ,
где F — сила упругости в теле, k — коэффициент упругости или жесткости, x — линейное изменение размеров тела.
Почему тут минус? Да его можно и не писать, если понимать логику. Вспоминаем, что сила есть вектор. Так как сила, возникающая в теле, противонаправлена силе приложенной, то формула записывается с минусом.
Иногда вместо k или x используют другие обозначения, но смысл от этого не меняется.
Разбираемся с новыми буквами
У нас появилась сила упругости в теле. Именно она в формуле — это F. Вспоминаем, что по третьему закону Ньютона (обязательно читаем), она равна силе или векторной сумме сил, воздействующей на тело. Мы считаем именно эту силу. Поэтому, если, скажем, предстоит решить задачу, где книга лежит на столе, а стол гнется, то мы считаем, что сила упругости в столе, равна нашему любимому m*g, так как книга притягивается к полу и вызывает изгиб стола.
k — это жесткость тела. Зависит она от материала и характеристик тела. Очевидно, что деревянная доска и железная труба будут иметь разные жесткости.
Стоит отметить, что это величина расчётная, но в начале изучения вы будете брать её из табличек и считать константой. А вот дальше нужно будет вспомнить/изучить, такую штуку, как модуль упругости первого рода или модуль Юнга. Это уже основы сопротивления материалов и начнется «О Боже, профессор нинада!»)
х — это линейное удлинение. Считается очень просто. Сколько стало минус сколько было :). В сложных случаях считается тоже посложнее, но нужны просто знания геометрии.
Новые важные понятия и обобщенный закон Гука
Про обобщенный закон Гука следует написать отдельную статью. Здесь же отмечу, что искушенный читатель наверняка заметил — пока речь идёт только об одноосном деформировании. Мы работаем с пружиной, которую можно растянуть вдоль оси икс или сжать вдоль оси икс. А что, если пружина будет растягиваться и сгибаться одновременно…
Реальные тела обычно деформируются во все стороны. В дело вступают сразу три направления.
В этом случае нужно использовать обобщенный закон Гука. Используются так называемые тензоры. Это большая тема, а тут отметим, что если вас вдруг спросили, а какие ограничения есть у стандартного закона Гука, то обязательно не забудьте сказать, что деформация должна происходить вдоль одной оси.
Ещё при разговоре об ограничениях выполнения закона стоит отметить про предел пропорциональности. Это максимальное механическое нагружение, до которого выполняется закон Гука. Смотрим на график. По оси Ыгрик у нас отложено механическое напряжение (читай как сила для упрощения), а по оси Ыкс — изменение размеров. Пока у нас есть линейная зависимость, отмеченная красной прямой линией, закон Гука будет выполняться.
Все тела ведут себя по разному и при достижении точки А одни тела развалятся/сломаются, а другие необратимо удлинятся/сожмутся. В конкретном примере тело расслюнявило, но оно не сломалось. Связь между силой и деформацией стала нелинейной.
Закон Гука выполняется только при малых деформациях и далеко не для всех материалов! Так, для многих полимеров закон Гука не будет выполняться. Выполняется он только, напомним, в линейных системах.
Как же описывать связь силы упругости и деформации в нелинейных системах, т.е. когда деформация не мала. Или что делать, когда закон Гука неприменим. Очень хорошо, что вы об этом задумались! Но это большая и сложная тема. Всё опять сводится к закону Гука в обобщенной форме и условно принимается, что деформация мала. Примерно так :)…
Но вообще, при больших деформациях следует использовать иные способа расчёта.
Источник
1.
Деформация тел. Сила упругости. Закон Гука
Известно, что на все тела, находящиеся на Земле, действует сила тяжести, обусловленная гравитацией.
Какие ещё силы могут возникнуть? Рассмотрим несколько примеров.
(1). На книгу, лежащую на столе, также действует сила тяжести, которая направлена к центру Земли.
Книга не проваливается сквозь стол, а находится в покое.
Значит, существует сила, которая уравновешивает силу тяжести.
(2). Рассмотрим тело, подвешенное на нити. Сила тяжести будет направлена вниз.
Тело не может упасть, потому что силу тяжести компенсирует сила натяжения нити.
(3). Проведём опыт.
Позволим гире опуститься на середину доски на опорах.
Сила тяжести гири воздействует на доску и оказывает деформацию изгиба — заставляет сгибаться. Свойство упругости доски вызывает противоположную силу — силу реакции опоры — для того, чтобы вернуться в исходное, недеформированное состояние. Обе силы направлены вдоль одной прямой через центр масс гири, но направления противоположны, поэтому сумма сил равна нулю.
Под весом гири доска прогнулась — изменила свою форму.
Деформацией тела называют изменение размера или формы тела под воздействием внешних сил.
При изменении формы и размера под воздействием деформирующих сил каждое упругое тело пытается вернуться в начальное состояние.
Сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости.
Сила упругости — векторная величина, обозначается (vec{F})(_{упр}).
Чем сильнее давит тело на опору, тем больше деформация и возникающая в ответ на деформацию сила упругости.
Если сила упругости становится равной силе тяжести, действующей на тело, деформация доски прекращается. Если исчезнет деформирующая сила, то исчезнет и сила упругости.
В зависимости от приложенных сил различают виды деформации:
деформация растяжения и сжатия;
деформация сдвига;
деформация изгиба;
деформация кручения.
Если после прекращения действия сил, деформирующих тело, оно возвращается в исходное положение, то деформация является упругой.
(4). Рассмотрим силы, действующие в опыте с гирей, подвешенной на нити.
Синей стрелкой обозначен вектор силы тяжести (vec{F_2}), направленной к центру Земли (вертикально вниз). Силе тяжести противодействует сила упругости нити (vec{F_1}), называемая силой натяжения нити. Она обозначена красной стрелкой, направленной вверх.
Гиря не движется, значит, силы компенсируют друг друга, сила тяжести равна силе упругости: (vec{F_1}-vec{F_2}=0); но направлена противоположно.
Подвесом называют нить, на которую подвешивается тело. Обычно имеют в виду нерастяжимую прочную нить.
Подвесом может быть упругое тело: пружина, резина. Значит, оно может растягиваться (деформироваться) под действием силы тяжести тела. При растяжении длина подвеса изменяется на некоторую величину, которую называют удлинением: (Delta l=l-l_0), где (l_0) — начальная длина нити, а (l) — конечная длина.
Закон Гука: изменение длины тела при растяжении (или сжатии) прямо пропорционально модулю силы упругости
Fупр=k⋅Δl, где
(Δl) — удлинение тела (изменение его длины),
(k) — коэффициент пропорциональности, который называется жёсткостью (пружины), которая зависит от материала.
Закон Гука справедлив для упругой деформации.
Источник
Деформация растяжения-сжатия
В машиностроении, строительстве и архитектуре при расчетах прочности и жесткости материалов используется математический аппарат технической механики. Деформация растяжения – одно из ключевых понятий, характеризующее механические процессы, происходящие в материалах при приложении к ним внешних воздействий. Для наглядности изучаются изменения, происходящие в брусе с постоянным сечением, характерные для упругой деформации при приложении внешних усилий.
Закон Гука (английский физик Р. Гук, 1653-1703) для упругой деформации растяжения/сжатия гласит, что нормальное напряжение находится в линейной зависимости (прямо пропорционально) к относительному удлинению/укорочению. Математический аппарат технической механики описывает эту формулу следующим образом:
Коэффициент пропорциональности E (модуль упругости, модуль Юнга) – величина определяющая жесткость материала, единица измерения – паскаль (ПА).
Его значения были установлены эмпирическим путем для большинства конструкционных материалов, необходимую информацию можно почерпнуть в справочниках по машиностроению. Относительная деформация является отношением изменения длины бруса к его изначальным размерам, это безразмерная величина, которая иногда отражается в процентном соотношении.
При растяжении или сжатии у бруса меняется не только длина, но происходят поперечные деформации: при сжатии образуется утолщение, при растяжении толщина сечения становится меньше. Величины этих изменений находятся в линейной зависимости друг от друга, причем установлено, что коэффициент пропорциональности Пуассона (фр. ученый С. Пуассон, 1781-1840) остается всегда неизменным для исследуемого материала.
Внутренние усилия при растяжении и сжатии
При приложении к брусу с постоянным сечением внешних воздействий, действие которых в любом поперечном разрезе направлено параллельно его центральной оси и перпендикулярно сечению, с ним происходит следующий вид деформации: растяжение или сжатие. На основе гипотезы о принципе независимости внешнего воздействия для каждого из поперечных разрезов можно рассчитать внутреннее усилие как векторную сумму всех приложенных внешних воздействий. Растягивающие нагрузки в сопромате принято считать положительными, а сжимающие отрицательными.
Рассмотрев произвольный разрез бруса или стержня, можно сказать что внутренние напряжения равны векторной сумме всех внешних сил, сгруппированных по одной из его сторон. Это верно только с учетом принципа Сен-Венана (фр. инженер А. Сен-Венан, 1797-1886) о смягчении граничных условий, т.к. распределение внутренних усилий по поверхности разреза носит сложный характер с нелинейными зависимостями, но в данном случае значением погрешности можно пренебречь как несущественным.
Применяя гипотезу Бернулли (швейцарский математик, И. Бернулли, 1667-1748) о плоских сечениях, для более наглядного представления процессов распределения сил и напряжений по центральной оси бруса можно построить эпюры. Визуальное представление более информативно и в некоторых случаях позволяет получить необходимые величины без сложных расчетов. Графическое представление отражает наиболее нагруженные участки стержня, инженер может сразу определить проблемные места и ограничиться расчетами только для критических точек.
Все вышесказанное может быть применимо при квазистатической (система может быть описана статически) нагрузке стержня с постоянным диаметром. Потенциальная энергия системы на примере растяжения стержня определяется по формуле:
U=W=FΔl/2=N²l/(2EA)
Потенциальная энергия растяжения U концентрируется в образце и может быть приравнена к выполнению работы W (незначительное выделение тепловой энергии можно отнести к погрешности), которая была произведена силой F для увеличения длины стержня на значение абсолютного удлинения. Преобразуя формулу, получаем, что вычислить значение величины потенциальной энергии растяжения можно, рассчитав отношение квадрата продольной силы N помноженной на длину стержня l и удвоенного произведения модуля Юнга E материала на величину сечения A.
Как видно из формулы, энергия растяжения всегда носит положительное значение, для нее невозможно применить гипотезу о независимости действия сил, т.к. это не векторная величина. Единица измерения – джоуль (Дж). В нижней части формулы стоит произведение EA – это так называемая жесткость сечения, при неизменном модуле Юнга она растет только за счет увеличения площади. Величина отношения жесткости к длине бруса рассматривается как жесткость бруса целиком.
Напряжения при растяжении сжатии
Используя гипотезу Бернулли для продольной упругой деформации стержня, можно определить продольную силу N как равнодействующую всех рассредоточенных по сечению внутренних усилий. Гипотеза Бернулли совместно с гипотезой о ненадавливании волокон позволяет сказать, что σ в произвольной точке разреза будут постоянны, т.к. реакция продольных волокон одинакова на всем поперечном разрезе. Для определения величины нормального напряжения σ используется следующая формула:
Напряжение для упруго деформированного стержня описывается как отношение внутренней силы N к площади сечения A. Считается положительным при растяжении, при сжатии рассматривается как отрицательное.
Абсолютная деформация зависит от жесткости сечения, величины продольной силы и длины бруса. Зависимость можно описать по следующей формуле:
Δl=Nl/EA
Таким образом, методика расчета величины абсолютного изменения длины такова: необходимо просчитать отношение значения продольной силы N умноженной на длину стержня l и жесткости сечения (произведение модуля Юнга E на площадь сечения A).
В реальных расчетах на брус действует достаточно много разнонаправленных сил, для решения таких задач требуется построение эпюр, которые могут наглядно показать какие напряжения действуют на разных участках, чем обусловлена деформация при растяжении и сжатии.
В рамках такой квазистатической (условно статической) системы, как брус или стержень с переменным сечением или отверстием, потенциальная энергия растяжения может быть рассмотрена как сумма энергий однородных участков. При проведении расчетов важно правильно разделить стержень на участки и смоделировать все участвующие в процессе силы и напряжения. Для реальных расчетов построение эпюр – сложная задача, которая требует от инженера хорошего понимания действующих на деталь нагрузок. Например, вал со шкивами разного диаметра требует сначала определения критических точек и разбивки на соответствующие участки, затем построения графиков по ним.
Деформации при растяжении сжатии
При растяжении/сжатии бруса могут возникать 2 вида деформации. Первый – упругая, второй – пластическая. Для упругой деформации характерно восстановление первоначальных параметров после прекращения воздействия. В случае пластической стадии деформации материала он утрачивает и не восстанавливает форму и размеры. Величина воздействия для перехода одного вида в другой называется пределом текучести.
Для расчета перемещения при растяжении бруса или стержня следует использовать метод разделения на участки, в рамках которых осуществляется приложение внешних воздействий. В точках воздействия силы следует вычислить величину изменения длины, используя формулу: Δl=Nl/EA. Как видно она зависит от жесткости сечения, длины бруса или стержня и величины действующей продольной силы. Итоговым перемещением для бруса целиком будет сумма всех частичных перемещений, рассчитанных для точек приложения силы.
Поперечные деформации бруса (становится более толстым при сжатии и тонким при растяжении) также характеризуются абсолютной и относительной величиной деформации. Первая – разность между размером сечения после и до приложения внешних воздействий, вторая – отношение абсолютной деформации к его исходному размеру. Коэффициент Пуассона, отражающий линейную зависимость продольной и поперечной деформаций, определяет упругие качества материалов и считается неизменным для растяжения и сжатия. Продольные наиболее наглядно отражают процессы, происходящие в брусе или стержне при внешнем воздействии. Зная величину любой из них (продольной или поперечной) и используя коэффициент Пуассона, можно рассчитать значение неизвестной.
Для определения величины деформации пружины при растяжении можно применить закон Гука для пружин:
F=kx
В данном случае х – увеличение длины пружины, k – коэффициент жесткости (единица измерения Н/м), F – сила упругости, направленная в противоположную от смещения сторону. Величина абсолютной деформации будет равна отношению силы упругости к коэффициенту жесткости. Коэффициент жесткости определяет упругие свойства материала, используемого для изготовления, может быть использован для выбора материала изготовления в условиях решения конкретной задачи.
Расчеты на прочность и жесткость
Прочность характеризует способность конструкционного материала сопротивляться внешним воздействиям без разрушений и остаточных изменений. Жесткость находится в линейной зависимости от модуля Юнга и размера сечения. Чем больше площадь, модуль упругости не меняется, тем больше жесткость. В общем случае жесткость подразумевает способность деформироваться без значительных изменений. Коэффициент запаса прочности – безразмерная величина, равная отношению предельного напряжения к допустимому. Запас прочности характеризует штатный режим работы конструкции даже с учетом случайных и не предусмотренных нагрузок. Наименьшим запасом прочности обладают пластические (1.2-2.5) и хрупкие (2-5) материалы.
Применение в расчетах этих коэффициентов позволяет, например, рассчитать опасную толщину для стержня, при которой может возникнуть максимальное нормальное напряжение. Используя коэффициент прочности и возможное предельное напряжение возможно произвести расчет необходимого диаметра вала, который гарантированно обеспечит упругую деформацию и не приведет к пластической. Для инженеров-экономистов важны расчеты наименьших безопасных размеров деталей конструкции по заданным нагрузкам.
Большинство практических расчетов на прочность и жесткость производятся для получения минимальных значений геометрических размеров конструкционных элементов и деталей машин в условиях известных внешних воздействий и необходимого и достаточного запаса прочности. Может решаться обратная задача получения значений предельных нагрузок при условии сохранения геометрических размеров и для конкретного материала.
Сложные конструкции могут быть разделены на элементарные части, для которых будут производиться расчеты, затем полученные результаты интерпретируются в рамках всей системы, для этого удобно строить эпюры распределения внешних воздействий и внутренних напряжений статически определенной системы.
С помощью известной жесткости материала делают расчеты максимально возможной длины балки или стержня (вала) при условии неизменности его сечения. Для ступенчатых валов необходимо строить эпюры воздействия внешних сил и возникающих в точках их приложения внутренних напряжений в критических точках. От правильно построенной теоретической модели будет зависеть насколько эффективно и долго прослужит вал для станка, не разрушится ли он от динамических крутящих моментов. На этапе проектирования можно выявить потенциальные слабые точки и рассчитать необходимые параметры для заданного предела прочности.
С расчетами на прочность связаны такие понятия, как срез и смятие. Срез проявляется в виде разрушения детали соединения в условиях возникновения в ее поперечном сечении перпендикулярной к нему и достаточной силы.
При расчетах соединений используют пределы текучести используемых материалов и коэффициенты запаса прочности, вычисляют максимально возможные напряжения.
Исследования на прочность обычно подразумевают решение нескольких задач: в условиях проведения поверочного расчета на проверку прочности при известных усилиях и площади сечения оценивают фактический коэффициент запаса прочности; подбор оптимального диаметра при заданных нагрузках и допустимом напряжении; вычисляют грузоподъемность или несущую способность с помощью определения внутреннего усилия при известной площади сечения и напряжении.
Прочностные расчеты при разных видах воздействий в рамках условно статических систем сложны, требуют учета многих, иногда не очевидных, факторов, их практическая ценность заключается в вычислении допустимых размеров конструкционных материалов для заданных параметров запаса прочности.
Источник