Как рассчитать силу растяжения пружины

Расчет пружин сжатия и растяжения

ФОРМУЛЫ И СПОСОБЫ РАСЧЕТА ПРУЖИН
ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ
(по ГОСТ 13765-86)

расчет пружин

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ПРУЖИН ПО ГОСТ 13765-86

    1. Исходными величинами для определения размеров пружин являются силы F1 и F2 , рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении
или при разгрузке vmax, выносливость Np и наружный диаметр пружины D1 (предварительный).Если задана только одна F2 сила то вместо рабочего хода h для подсчета берут величину рабочей деформации S    2, соответствующую заданной силе.

    2. По величине заданной выносливости Np предварительно определяют принадлежность пружины к соответствующему классу по табл. 1.

    3. По заданной силе F2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F3.

    4. По значению F3, пользуясь табл. 2, предварительно определяют разряд пружины.

    5. По табл. 11-17 находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D1. В этой же строке находят соответствующие значения силы F3 и диаметра проволоки d.

    6. Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ3 находят по табл. 2, для пружин из холоднотянутой и термообработанной τ3 вычисляют с учето значений временного сопротивления Rm. Для холоднотянутой проволоки Rm определяют из ГОСТ 9389-75, для термообработанной — из ГОСТ 1071-81.

    7. По полученным значениям F3и τ3, a также по заданному значению F2 по формулам (5) и (5а) вычисляют критическую скорость vk и
отношение vmax / vk, подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу. При несоблюдении условий vmax / vk < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия.
Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин.

    8. По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3, после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25).

КЛАССЫ И РАЗРЯДЫ ПРУЖИН

Ниже рассматриваются винтовые цилиндрические пружины сжатия и растяжения из стали круглого сечения с индексами i = d/D от 4 до 12.

Приводимые данные распространяются на пружины для работы при температурах от -60 до +120°С в неагрессивных средах. Пружины разделяют на классы, виды и разряды (см. ниже).

Класс пружин характеризует режим нагружения и выносливости, а также определяет основные требования к материалам и технологии изготовления.

Разряды пружин отражают сведения о диапазонах сил, марках применяемых пружинных сталей, а также нормативах по допускаемым напряжениям.

Отсутствие соударения витков у пружин сжатия определяется условием vmax / vk < 1,

где,

vmax — наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке, м/с;

vk — критическая скорость пружин сжатия, м/с (соответствует возникновению соударения витков пружины от сил инерции).

ВЫНОСЛИВОСТЬ И СТОЙКОСТЬ ПРУЖИН

При определении размеров пружин необходимо учитывать, что при vmax> vk, помимо касательных напряжений кручения, возникают контактные напряжения от соударения витков, движущихся по инерции после замедления и остановок сопрягаемых с пружинами деталей. Если соударение витков отсутствует, то лучшую выносливость имеют пружины с низкими напряжениями τ3, т.е. пружины класса I по табл. 1, промежуточную — циклические пружины класса II и худшую — пружины класса III.

При наличии интенсивного соударения витков выносливость располагается в обратном порядке, т.е. повышается не с понижением, а с ростом τ3. В таком же порядке располагается и стойкость, т.е. уменьшение остаточных деформаций или осадок пружин в процессе работы.

1. КЛАССЫ ПРУЖИН по ГОСТ 13765-86

Класс пружинВид
пружин
НагружениеВыносливость NF
(установленная безотказная наработка), циклы,
не менее
Инерционное
соударение витков
IСжатия и растяженияЦиклическое1×107Отсутствует
IIЦиклическое и статическое1×105
IIIСжатияЦиклическое2×103Допускается

   Примечание. Указанная выносливость не распространяется на зацепы пружин растяжения.

2. РАЗРЯДЫ ПРУЖИН по ГОСТ 13765-86

Сила пружины при максим. деформации F3, HДиаметр проволоки (прутка) d, ммМатериалТвердость после термооб­работки HRCМакси­мальное касательное напряжение при кручении τ3, МПа
Марка сталиСтандарт на заготовку
I11 — 8500,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,3RmГОСТ 13766
21 — 800Проволока классов II и IIА по ГОСТ 9389ГОСТ 13767
22,4 — 8001,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,32Rm
3140 — 600003,0 — 12,060С2А, 65С2ВА, 70СА3 по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5560ГОСТ 13768
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
42800 — 18000014 — 7060С2А, 65С2ВА, 70С3А, 60С2, 60С2ХА, 60С2ХФА, 51ХФА по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5480ГОСТ 13769
II11,5 — 14000,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,5RmГОСТ 13770
21,25 — 1250Проволока класса II и IIA по ГОСТ 9389ГОСТ 13771
37,5 — 12501,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,52Rm
3236 — 100003,0 — 12,060С2А, 65С2ВА по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5960ГОСТ 13772
65Г по ГОСТ 14959Проволока по ГОСТ 2771
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
44500 — 28000014 — 7060С2А, 60С2, 65С2ВА, 70С3А, 51ХФА, 65Г, 60С2ХФА, 60С2ХА по ГСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5800ГОСТ 13773
III112,5 — 10000,3 — 2,8по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,6RmГОСТ 13774
2315 — 140003,0 — 12,060С2А, 65С2ВА, 70С3А по ГОСТ 14959Проволока по ГОСТ 1496354,5…58,013509ГОСТ 13775
36000 — 2000014 — 2560С2А, 65С2ВА, 70С3А по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259051,5…56,01050ГОСТ 13776
Читайте также:  Как быстро проходит растяжение запястья

   Примечания:

1. Максимальное касательное напряжение при кручении приведено с учетом кривизны витков.

2. Rm — предел прочности пружинных материалов

    Средствами регулирования выносливости и стойкости циклических пружин в рамках каждого класса при неизменных заданных значениях рабочего хода служат изменения разности между максимальным касательным напряжением при кручении τ3 и касательным напряжением при рабочей деформации τ2.

    Возрастания разности τ3 — τ2 обусловливают увеличение выносливости и стойкости
циклических пружин всех классов при одновременном возрастании размеров узлов.
Уменьшение разностей τ3 — τ2 сопровождается обратными изменениями служебных качеств и размеров пространств в механизмах для размещения пружин.

   Для пружин I класса расчетные напряжения и свойства металла регламентированы так, что при
νmax/ νk ≤ 1 обусловленная выносливость пружин при действии силы F1 (сила пружины при предварительной деформации) не менее 0,2F3 (сила пружины при максимальной деформации) обеспечивается при всех осуществимых расположениях и величинах рабочих участков на силовых диаграммах разности напряжений τ3 — τ2, и τ2 — τ1, (касательное напряжение при предварительной деформации).

   Циклические пружины II класса при νЕЙ ПРУЖИН СЖАТИЯ И РАСТЯЖЕНИЯ

1. Пружина сжатия из проволоки круглого сечения с неподжатыми и нешлифованными крайними витками.

расчет  пружин

2. Пружина сжатия с поджатыми по 3/4 витка с каждого конца и шлифованными на 3/4 окружности опорными поверхностями.

расчет  пружин

3. Пружины растяжения из проволоки круглого сечения с зацепами, открытыми с одной стороны и расположенными в одной плоскости.

расчет  пружин
ОПОРНЫЕ ВИТКИ ПРУЖИН СЖАТИЯ
расчет  пружин
ДЛИНА ПРУЖИН СЖАТИЯ

Длину пружин сжатия рекомендуется принимать Lo <= (D1 — d).

Можно брать Lo до 5 х (D — d), но тогда пружины должны работать на направляющем стержне или в направляющей гильзе. При этом между пружиной и сопрягаемой деталью выдерживают зазор z в зависимости от величины среднего диаметра D пружины.

Значение зазора z, мм
расчет  пружин

Похожие документы:

чертеж пружины сжатия;

чертеж пружины параболоидной;

расчет пластинчатой пружины изгиба;

расчет пружин кручения из круглой проволоки;

ГОСТ 13764-86 » Пружины винтовые цилиндрические сжатия и растяжения из стали круглого сечения. Классификация»;

ГОСТ 13766-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13767-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13768-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13769-86 «Пружины винтовые цилиндрические сжатия 1 класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13770-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13771-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13772-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13773-86 «Пружины винтовые цилиндрические сжатия II класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13774-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13775-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13776-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 3 из стали круглого сечения. Основные параметры витков».

Источник

Калькулятор расчета пружин сжатия онлайн, изготовление по ГОСТ

Тип пружины
Материал
Вариант формирования зацепов
Диаметр проволоки (d) *

мм

Диаметр наружный (D нар.) *

мм

Длина пружины по зацепам (LO) *

мм

Длина пружины по телу (LO`) *

мм

Предварительное растяжение (L1)

мм

Рабочее растяжение (L2)

мм

Рабочее растяжение (L3)

мм

Количество пружин *

шт

Значения отмеченные * обязательны для заполнения.

Все расчетные данные несут информационно-ознакомительный характер.

Мой вес: 0.39875 кг.

Материал: 60С2А 51ХФА

Вариант зацепа: Удлинённый зацеп

D(вн)=
48.00

L0=64

L0*=38

D(нар)=64

d=8

F1=1830.90

F2=6713.31

F3=0.00

L1=94

L2=110

L3=0

Диаметр средний (Dср.) 56.00 мм
Диаметр внутренний (D вн.) 48.00 мм
Внутренняя длина зацепа 48.00 мм
Количество рабочих витков (n) 3.75 шт
Количество витков полное (n1) 5.75 шт
Предварительная нагрузка (F1) 1830.90 H
Рабочая нагрузка (F2) 6713.31 H
Рабочая нагрузка (F3) 0.00 H
Жёсткость пружины (с) 61.03 H/мм
Шаг (t) 8 мм
Развертка пружины 1011.08 мм
Масса пружины (m1) 0.39875 кг
Вес партии (m2) 717.76 кг

https://metizdetal.beget.tech/

Источник

Расчет пружин | Справочник для конструкторов, инженеров, технологов

Сила пружины при предварительной деформации, НF 1Принимается в зависимости от нагрузки пружиныСила пружины при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме), НF 3Принимается в зависимости от нагрузки пружиныРабочий ход пружины, ммhПринимается в зависимости от нагрузки пружиныНаибольшая скорость перемещения подвижного конца пружины при нагружении или разгрузке, м/сv maxПринимается в зависимости от нагрузки пружиныВыносливость пружины, число циклов до разрушенияN FПринимается в зависимости от нагрузки пружиныНаружный диаметр пружины, ммD 1Предварительно принимаются с учетом конструкции узла. Уточняются по таблицам ГОСТ 13766…ГОСТ 13776Относительный инерционный зазор пружины сжатия. Для пружин растяжения служит ограничением максимальной деформацииδ δ = 1 — F 2 / F 3 (1)
Для пружин сжатия классов I и II
δ = 0,05 — 0,25
для пружин растяжения
δ = 0,05 — 0,10
для одножильных пружин класса III
δ = 0,10 — 0,40
для трехжильных класса III
δ = 0,15 — 0,40Сила пружины при максимальной деформации, НF 3
Читайте также:  Лечение растяжения суставов медикаментами

Уточняется по таблицам ГОСТ 13766 ÷ ГОСТ 13776

Сила предварительного напряжения (при навивке из холоднотянутой и термообработанной проволоки), НF 0(0,1 ÷ 0,25) F 3Диаметр проволоки, ммdВыбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Диаметр трехжильного троса, ммd 1Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Жесткость одного витка пружины, Н/ммc 1Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776Максимальная деформация одного витка пружины, ммs’ (при F0 = 0)
s» (при F0 > 0)Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776

Максимальное касательное напряжение пружины, МПаτ 3
Для трехжильных пружин

Критическая скорость пружины сжатия, м/сv k

Для трехжильных пружин

Модуль сдвига, МПаGДля пружинной стали
G = 7,85 х 104Динамическая (гравитационная) плотность материала, Н • с2/м4ρ ρ = γ / g,
где g — ускорение свободного падения, м/с2
γ — удельный вес, Н/м3
Для пружинной стали ρ = 8•103Жесткость пружины, Н/ммс

Для пружин с предварительным напряжением

Для трехжильных пружин

Число рабочих витков пружиныnПолное число витков пружиныn 1

где n2 — число опорных витков

Средний диаметр пружины, ммD

Для трехжильных пружин

Индекс пружиныi

Для трехжильных пружин

Рекомендуется назначать от 4 до 12

Коэффициент расплющивания троса в трехжильной пружине, учитывающий увеличение сечения витка вдоль оси пружины после навивкиΔДля трехжильного троса с углом свивки β = 24° определяется по таблице

i4,04,55,05,56,07,0 и
более
Δ1,0291,0211,0151,0101,0051,000
Предварительная деформация пружины, ммs 1Рабочая деформация пружины, ммs 2Максимальная деформация пружины, ммs 3Длина пружины при максимальной деформации, ммl 3

где n3 — число обработанных витков

Для трехжильных пружин

Для пружин растяжения с зацепами

Длина пружины в свободном состоянии, ммl 0Длина пружины растяжения без зацепов в свободном состоянии, ммl’ 0Длина пружины при предварительной деформации, ммl 1

Для пружин растяжения

Длина пружины при рабочей деформации, ммl 2

Для пружин растяжения

Шаг пружины в свободном состоянии, ммt

Для трехжильных пружин

Для пружин растяжения

Напряжение в пружине при предварительной деформации, МПаτ 1Напряжение в пружине при рабочей деформации, МПаτ 2Коэффициент, учитывающий кривизну витка пружиныk

Для трехжильных пружин

Длина развернутой пружины (для пружин растяжения без зацепов), ммlМасса пружины (для пружин растяжения без зацепов), кгmОбъем, занимаемый пружиной (без учета зацепов пружины), мм 3VЗазор между концом опорного витка и соседним рабочим витком пружины сжатия, ммλУстанавливается в зависимости от формы опорного виткаВнутренний диаметр пружины, ммD 2Временное сопротивление проволоки при растяжении, МПаR mУстанавливается при испытаниях проволоки или по ГОСТ 9389  и ГОСТ 1071Максимальная энергия, накапливаемая пружиной, или работа деформации, мДжДля пружин сжатия и растяжения без предварительного напряжения

Для пружин растяжения с предварительным напряжением

Источник

Сила упругости

Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.

Виды деформации

Деформация – это изменение формы, или размеров тела.

Есть несколько видов деформации:

  • сдвиг;
  • кручение;
  • изгиб;
  • сжатие/растяжение;

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.

Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Растяжение пружины

Рассмотрим подробнее деформацию растяжения на примере пружины.

Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.

Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение

Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.

Сравним длину нагруженной пружины с длиной свободно висящей пружины.

[ large L_{0} + Delta L = L ]

Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).

[ large boxed{ Delta L = L — L_{0} }]

( L_{0} left(text{м} right) )  – начальная длина пружины;

( L left(text{м} right) )  – конечная длина растянутой пружины;

( Delta L left(text{м} right) )  – кусочек длины, на который растянули пружину;

Величину ( Delta L ) называют удлинением пружины.

Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.

Примечание: Отношение – это дробь. Относительное – значит, дробное.

[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]

( varepsilon ) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.

Читайте также:  Что такое жесткость сечения при растяжении сжатии

[ large boxed{ F_{text{упр}} = k cdot Delta L }]

Эту формулу назвали законом упругости Гука.

( F_{text{упр}} left( H right) ) – сила упругости;

( Delta L left(text{м} right) )  – удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) )  – коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.

Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

[ large F_{text{упр}} — m cdot g = 0 ]

Подставим в это уравнение выражение для силы упругости

[ large k cdot Delta L — m cdot g = 0 ]

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:

[ large boxed{ k = frac{ m cdot g }{Delta L} }]

(g) – ускорение свободного падения, оно связано с силой тяжести.

Соединяем две одинаковые пружины

В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.

Параллельное соединение пружин

На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.

Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины

Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две параллельные пружины:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]

Умножим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{параллел}} = 2k_{1} } ]

Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной

Последовательное соединение пружин

Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.

Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.

На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).

Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений

Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины

Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две последовательные пружины:

[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{послед}} cdot 2 = k_{1} ]

Разделим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]

Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной

Потенциальная энергия сжатой или растянутой пружины

Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу,  например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.

Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией

Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).

Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:

[ large boxed{ E_{p} = frac{k}{2} cdot  left( Delta L right)^{2} }]

( E_{p} left( text{Дж} right)) – потенциальная энергия сжатой или растянутой пружины;

( Delta L left(text{м} right) )  – удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) )  – коэффициент жесткости (упругости) пружины.

Выводы

  1. Упругие тела – такие, которые сопротивляются деформации;
  2. Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
  3. Деформация – изменение формы, или размеров тела;
  4. Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
  5. Удлинение пружины – это разность ее конечной и начальной длин;
  6. Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
  7. Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
  8. Если пружины соединяют параллельно – коэффициент жесткости системы увеличивается;
  9. А если соединить пружины последовательно – коэффициент жесткости системы уменьшится.

Источник