Какая из формул выражает закон гука при растяжении
Содержание статьи
Закон Гука [в понятной форме]
Обычно при изучении закон Гука не вызывает особых сложностей. Запомнить, что деформация в упругом теле пропорциональна приложенной к нему силе, совсем не сложно.
Чаще всего, этого знания вполне достаточно для школьного курса, чтобы забыть про Гука навсегда :)… Чтобы он лучше запомнился, глянем на портрет.
Однако, если вы изучаете физику по углубленной программе или если ваш преподаватель хочет добиться демонстрации понимания этого закона на более высоком уровне, то сказанного явно недостаточно. Кроме того, при поступлении в технический институт, знаний этих тоже мало. Ведь на законе Гука держится великий и ужасный сопромат! Да и при изучении механики — это один из самых важных законов.
Давайте изложим основные постулаты Гука в простой и понятной читателю форме, ну а если вопросы останутся — пишем их в комментариях или в личку.
Введение и основные понятия
Наверняка вы в детстве играли с такой штукой, которая называется лук со стрелами. Принцип работы этого устройства очень прост. Есть согнутая палка, чаще всего из ивы, и есть тетива, которая связывает концы палки. Когда мы натягиваем тетиву стрелой, то сила упругости палки заставляет её возвращаться к прежнему состоянию и передавать энергию стреле.
Как вы догадываетесь, ключевое слово тут — сила упругости. Это такая сила, которая возникает в теле при попытке это тело согнуть или изменить его форму, то есть деформировать. Кстати, про силу полезно прочитать вот это. Обусловлена она внутренним взаимодействием частичек.
И тут тоже появилось новое слово — деформация. Думаю, пояснять что это такое, не нужно.
А вот сказать, что деформация бывает обратимая (упругая) и необратимая, важно. Ведь закон Гука работает в случаях существования упругой деформации.
Упругая деформация — это такая деформация, после которой тело возвращается к своим первоначальным геометрическим характеристикам, после снятия внешнего воздействия.
Простейшие виды деформации — это растяжение и сжатие. Сразу вспоминаем пружину. Ну и в учебнике физики вы как раз-таки встретите закон Гука, который раскрывается на примере пружины.
Формулировка закона Гука
Формулируется закон так:
Деформация, возникающая в упругом теле, пропорциональна приложенной к этому телу силе.
Если записывать его в виде формулы, то имеем следующее:
F = -kx ,
где F — сила упругости в теле, k — коэффициент упругости или жесткости, x — линейное изменение размеров тела.
Почему тут минус? Да его можно и не писать, если понимать логику. Вспоминаем, что сила есть вектор. Так как сила, возникающая в теле, противонаправлена силе приложенной, то формула записывается с минусом.
Иногда вместо k или x используют другие обозначения, но смысл от этого не меняется.
Разбираемся с новыми буквами
У нас появилась сила упругости в теле. Именно она в формуле — это F. Вспоминаем, что по третьему закону Ньютона (обязательно читаем), она равна силе или векторной сумме сил, воздействующей на тело. Мы считаем именно эту силу. Поэтому, если, скажем, предстоит решить задачу, где книга лежит на столе, а стол гнется, то мы считаем, что сила упругости в столе, равна нашему любимому m*g, так как книга притягивается к полу и вызывает изгиб стола.
k — это жесткость тела. Зависит она от материала и характеристик тела. Очевидно, что деревянная доска и железная труба будут иметь разные жесткости.
Стоит отметить, что это величина расчётная, но в начале изучения вы будете брать её из табличек и считать константой. А вот дальше нужно будет вспомнить/изучить, такую штуку, как модуль упругости первого рода или модуль Юнга. Это уже основы сопротивления материалов и начнется «О Боже, профессор нинада!»)
х — это линейное удлинение. Считается очень просто. Сколько стало минус сколько было :). В сложных случаях считается тоже посложнее, но нужны просто знания геометрии.
Новые важные понятия и обобщенный закон Гука
Про обобщенный закон Гука следует написать отдельную статью. Здесь же отмечу, что искушенный читатель наверняка заметил — пока речь идёт только об одноосном деформировании. Мы работаем с пружиной, которую можно растянуть вдоль оси икс или сжать вдоль оси икс. А что, если пружина будет растягиваться и сгибаться одновременно…
Реальные тела обычно деформируются во все стороны. В дело вступают сразу три направления.
В этом случае нужно использовать обобщенный закон Гука. Используются так называемые тензоры. Это большая тема, а тут отметим, что если вас вдруг спросили, а какие ограничения есть у стандартного закона Гука, то обязательно не забудьте сказать, что деформация должна происходить вдоль одной оси.
Ещё при разговоре об ограничениях выполнения закона стоит отметить про предел пропорциональности. Это максимальное механическое нагружение, до которого выполняется закон Гука. Смотрим на график. По оси Ыгрик у нас отложено механическое напряжение (читай как сила для упрощения), а по оси Ыкс — изменение размеров. Пока у нас есть линейная зависимость, отмеченная красной прямой линией, закон Гука будет выполняться.
Все тела ведут себя по разному и при достижении точки А одни тела развалятся/сломаются, а другие необратимо удлинятся/сожмутся. В конкретном примере тело расслюнявило, но оно не сломалось. Связь между силой и деформацией стала нелинейной.
Закон Гука выполняется только при малых деформациях и далеко не для всех материалов! Так, для многих полимеров закон Гука не будет выполняться. Выполняется он только, напомним, в линейных системах.
Как же описывать связь силы упругости и деформации в нелинейных системах, т.е. когда деформация не мала. Или что делать, когда закон Гука неприменим. Очень хорошо, что вы об этом задумались! Но это большая и сложная тема. Всё опять сводится к закону Гука в обобщенной форме и условно принимается, что деформация мала. Примерно так :)…
Но вообще, при больших деформациях следует использовать иные способа расчёта.
Источник
Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.
Сопротивление материалов
Деформации при растяжении и сжатии
Продольные деформации при растяжении и сжатии
Характер деформаций, которым подвергается прямой брус при растяжении или сжатии мы определили, проведя опыт с резиновым брусом, на котором была нанесена сетка линий.
Теперь представим себе брус постоянного сечения имеющий длину l, один из концов которого защемлен, а к свободному концу приложена растягивающая сила F. Под действием этой силы брус удлинится на некоторую величину Δl, которую назовем абсолютным удлинением бруса.
Отношение абсолютного удлинения Δl к первоначальной длине бруса l назовем относительным удлинением и обозначим ε:
ε = Δl / l
Относительное удлинение – величина безразмерная, иногда его выражают в процентах.
Итак, деформация бруса при растяжении и сжатии характеризуется абсолютным и относительным удлинением или укорочением.
***
Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.
Математически эта зависимость записывается так:
σ = E ε.
Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода.
Модуль упругости, как и напряжение, выражаются в паскалях (Па).
Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00…1,30) х 105 МПа и т. д.
Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А, то можно получить следующую зависимость:
Δl = Nl / (EА).
Произведение модуля упругости на площадь сечения Е×А, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.
Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение ЕА / l называют жесткостью бруса при растяжении и сжатии.
Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:
Δl = Σ (Δli)
***
Поперечные деформации при растяжении и сжатии
Описанный ранее опыт с резиновым брусом, на котором нанесена сетка линий, показал, что при растяжении поперечные размеры бруса уменьшаются, а при сжатии – увеличиваются, т. е. брус становится либо тоньше, либо толще. Это явление характерно для брусьев, изготовленных из всех материалов.
Опытным путем установлено, что при одноосном растяжении или сжатии отношение относительных поперечной и продольной деформаций для данного материала – величина постоянная.
Впервые на эту зависимость указал французский ученый С. Пуассон (1781-1840 г.г.) и математически она записывается так:
|ε1| = ν |ε|,
где ν – коэффициент поперечной деформации, называемый коэффициентом Пуассона.
Коэффициент Пуассона является безразмерной величиной, и характеризует упругие свойства материала. При растяжении и сжатии этот коэффициент принимается одинаковым.
Значения коэффициента Пуассона для разных материалов установлены опытным путем и их величины можно найти в соответствующих справочниках.
***
Потенциальная энергия деформации при растяжении
При статическом (медленном) растяжении образца растягивающая сила F возрастает от нуля до какого-то значения, удлиняет образец на величину Δl и при этом совершает работу W.
Эта работа аккумулируется в деформируемом образце в виде потенциальной энергии деформации U, причем, пренебрегая незначительными потерями энергии (например, тепловыми), можно считать, что W = U.
Путем изучения диаграмм растяжения образцов, установлено, что потенциальная энергия упругой деформации стержня длиной l постоянного поперечного сечения А при одинаковой во всех сечениях продольной силе N = F будет равна:
U = W = F Δl / 2 = N2 l / (2E А)
Сопротивление материалов оперирует, также, таким понятием, как удельная потенциальная энергия деформации, которая подсчитывается, как потенциальная энергия, приходящаяся на единицу объема бруса.
При одновременном действии растягивающих и сжимающих нагрузок или ступенчатом изменении размеров поперечного сечения бруса, его разбивают на однородные участки и для каждого подсчитывают потенциальную энергию деформации. Потенциальную энергию деформации всего бруса определяют, как сумму потенциальных энергий отдельных участков.
Анализируя формулу потенциальной энергии деформации можно сделать вывод, что эта величина всегда положительная, поскольку в ее выражения входят квадраты линейных и силовых величин. По этой причине при вычислении потенциальной энергии деформации нельзя применять принцип независимости действия сил (поскольку квадрат суммы не равен сумме квадратов слагаемых).
Единицей измерения потенциальной энергии деформации, как и работы, является джоуль (Дж).
***
Материалы раздела «Растяжение и сжатие»:
- Основные понятия о деформации растяжения и сжатия.
- Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.
Смятие
Правильные ответы на вопросы Теста № 5
№ вопроса | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Правильный вариант ответа | 3 | 3 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 1 |
Источник
Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635— 1703).
Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению. Математически закон Гука можно записать в виде равенства
Коэффициент пропорциональности Е характеризует жесткость материала, то есть его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода.
Модуль упругости и напряжение выражаются в одинаковых единицах: [Е = [ст]/[е] = Па.
В таблице 2.1 приведены значения ?для некоторых материалов.
Таблица 2.1
Материал | Е, МПа |
Чугун | (1,5…1,6) ТО5 |
Сталь | (1,96…2,16) ТО5 |
Медь | (1,0…1,3)105 |
Сплавы алюминия | (0,69…0,71) ТО5 |
Дерево (вдоль волокон) | (0,1—.0,16) -105 |
Текстолит | (0,06…0,1)-105 |
Капрон | (0,01…0,02) ТО5 |
Если в формулу закона Гука подставим выражения а = N/A, е = А///, то получим
Произведение ЕЛ, стоящее в знаменателе, называется жесткостью сечения при растяжении и сжатии; оно характеризует одновременно физикомеханические свойства материала и геометрические размеры поперечного сечения бруса. Соответственно, данная формула читается так: абсолютное удлинение или укорочение прямо пропорционально продольной силе и длине и обратно пропорционально жесткости сечения бруса.
Приведенные выше формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из одного материала и при постоянной продольной силе.
Для бруса, имеющего несколько участков, отличающихся материалом, размерами поперечного сечения, продольной силой, изменение длины всего бруса равно алгебраической сумме удлинений и укорочений отдельных участков:
Пример 2.2
На стальной ступенчатый брус действуют силы F= 40 кН и R = 60 кН. Площади поперечных сечений равны Ах = 800 мм2, Л2 = 1600 мм2. Длины участков указаны на рис. 2.4; а = 0,2 м. Определить изменение длины бруса двумя способами:
- 1) с помощью эпюры продольных сил;
- 2) с помощью принципа независимости действия сил.
Принять Е= 2-1011 Па.
Рис. 2.4
Решение.
1-й способ. Разобьем брус на участки и применяя метод сечений, определим значения продольных сил на каждом из них: Nx — N2 — —40 кН (сжатие), N3 = 20 кН (растяжение). Строим эпюру продольных сил.
Для бруса, состоящего из нескольких участков, А/ = A/i + Д/2 +Д/з, где по закону Гука
. Изменение длины первого участка
; аналогично
— изменения длин второго и третьего участков.
Следовательно,
Подставив числовые значения с учетом знаков продольных сил, получим
Произведя вычисления, получим Д/= —0,15 — 0,025 + 0,025 = —0,15 мм.
Следовательно, брус укоротится на 0,15 мм.
2-й способ. Применим принцип независимости действия сил. Изменение длины бруса Д/ будет складываться из укорочения AlF всего бруса под действием силы F и удлинения ДlR третьего участка под действием силы R: Д/ = AlF + + AlR. Вычислим каждое из этих слагаемых.
А1Р = -F- 3а/{ЕА) — F(a + 2а)/(ЕА2)’, подставляя числовые значения, получим А1Р= —0,225 мм.
Аналогично находим AlR = R ?2а/{ЕА2); AlR = 0,075 мм.
Отсюда Д/ — —0,225 + 0,075 = —0,15 мм.
Решая задачу двумя способами, мы получили один и тот же результат, что свидетельствует о правильности решения.
Источник
Закон Гука
Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.
Определение и формула закона Гука
Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.
Математическая запись закона выглядит так:
Рис. 1. Формула закона Гука
где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.
Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.
Рис. 2. Формула жесткости тела
Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.
Сила упругости
Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.
Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.
Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.
Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.
Особенности сил упругости
Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.
- они возникают во время деформации;
- они появляются у двух деформируемых тел одновременно;
- они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
- они противоположны по направлению смещению частиц тела.
Применение закона на практике
Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.
Рис. 3. Динамометр
Что мы узнали?
Статья подробно знакомит учащихся с материалом о том, как формулируется обобщенный закон Гука, который изучают в 7 классе, и его основной величине – силе упругости.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Тимур Катаев
10/10
Влад Демченко
7/10
Александр Коновалов
10/10
Октябрина Баева
10/10
Киара Кольт
8/10
Алина Фесова
9/10
Яніна Резніченко
8/10
Артемий Здор
8/10
Александра Щербина
9/10
Катя Пу
10/10
Оценка доклада
Средняя оценка: 4.3. Всего получено оценок: 634.
Источник