Скелет и сухожилия человека мышцы
Содержание статьи
СПАДИЛО.РУ
Опорно-двигательная система
Опорно-двигательная система относится к исполнительным системам органов. Она образована двумя составляющими:
- костями скелета, обеспечивающими функции опоры для организма (создания каркаса) и защиты внутренних органов от механических повреждений;
- и поперечно-полосатой мускулатурой, которая приводит в движении кости скелета и делает возможным перемещение человека в пространстве. Кроме того, мускулатура придаёт организму форму, защищает часть внутренних органов. Мимические мышцы изменяют выражение лица, что играет значительную роль в невербальном общении.
Также к опорно-двигательной системе относят структуры, обеспечивающие сочленение костей скелета и прикрепление к ним мышц.
Строение кости
По внешнему строению выделяют несколько видов костей:
Трубчатые кости состоят из двух головок (эпифизов) и тела (диафиза). Внутри тела трубчатых костей находится полость с костным мозгом. Красный костный мозг, он же «деятельный» – это стволовые клетки, из которых появляются новые элементы крови, иммунные клетки. Жёлтый, или «недеятельный» костный мозг представляет собой жировую ткань. Некоторые вредные для организма вещества, например, тяжелые металлы или лекарства, могут накапливаться в нем годами, вызывая хроническую интоксикацию. Различают длинные (плеча, предплечья, бедра и голени) и короткие (пястневые и плюсневые) трубчатые кости.
Плоские кости имеют плоскую форму. Это, например, лопатки, кости черепа, тазовые кости, ребра.
Короткие кости обычно имеют неправильную форму и небольшой размер. Они образуют скелет запястья, предплюсны.
Смешанные кости сочетают в себе элементы нескольких костей. Например, тело позвонка представлено короткой костью, а отростки и дуга – плоской.
Снаружи каждая кость покрыта тонкой живой тканью — надкостницей. Она обильно кровоснабжается, здесь находится много нервов и болевых рецепторов, что делает ушиб кости очень болезненным по сравнению с ушибом мышцы.
Ниже надкостницы расположено плотное (компактное) вещество кости, очень плотный твёрдый слой, образующий наружный каркас. Кнутри от него находится рыхлое губчатое вещество. Оно менее прочно, зато и весит гораздо меньше.
В месте соединения двух костей контактирующие поверхности покрыты хрящевыми пластинами. Хрящ упругий (то есть может незначительно сжиматься при увеличении нагрузки) и гладкий, благодаря чему кости не стираются от трения.
Костная ткань
Костная ткань относится к соединительным тканям, для них характерно преобладание межклеточного вещества над клеточным элементом. Это хорошо видно на микроскопическом уровне.
Кость состоит из двух типов веществ: органического (около 30%, в основном белки и углеводы) и неорганического (около 60 %, в основном соли кальция и магния, фосфаты); оставшиеся 10% составляет вода. Неорганическая часть придает костям твердость, но при этом повышает их хрупкость. Если кость прокалить, в ней останутся только минеральные соли и она будет легко ломаться. Органическое вещество более эластичное, если кость обработать кислотой, минеральные вещества растворятся и останется только гибкий коллагеновый остов, который может сгибаться, не ломаясь.
У детей преобладает содержание органического вещества, поэтому кости у них более эластичные и упругие. С возрастом повышается доля минеральных веществ и кости становятся менее упругими, но более прочными. При старении происходит гормональная перестройка организма, снижается число костных балок в губчатом веществе, основное вещество теряет воду, а минеральные составляющие вымываются, кости становятся хрупкими и легко ломаются. Эти явления называются остеопорозом.
Строительные клетки, остеобласты, создают вокруг себя каркас из минеральных веществ, преимущественно кальция. Единица строения кости называется остеоном.
Остеобласты активны не только в период роста организма, они работают на протяжении всей жизни человека. Кости постоянно обновляются и перестраиваются. Для этого нужно не только создать новые элементы каркаса, но и уничтожить старые или поврежденные участки. Этим занимаются остеокласты – клетки, разрушающие костную ткань.
Совместная работа остеокластов и остеобластов обеспечивает сращение переломов и реакцию кости на изменение привычной нагрузки. Например, если человек перестает ходить на несколько месяцев, вертикальная нагрузка на кости ног, которую давал вес тела, значительно снижается. Костные балки компактного вещества при этом перестраиваются, приспосабливаясь к отсутствию прежних действующих сил. При попытке снова начать ходить кости могут сломаться, не выдержав вес тела. Подобное происходит с космонавтами после длительных полетов.
Кровеносные сосуды и нервы, проходящие в кости.
На рисунке можно видеть кровеносные сосуды и нервы, проходящие в кости. Цилиндрические структуры вокруг них – остеоны. Они образуются клетками кости (изображены в виде розовых овальных тел с отростками).
Скелет человека
Скелет человека состоит из нескольких частей: осевого скелета, поясов конечностей и, собственно, свободных конечностей. Основу осевого скелета составляют позвоночник и череп.
Позвоночник
Позвоночник делится на пять отелов:
- шейный (7 позвонков);
- грудной (12 позвонков, к каждому прикреплена пара ребер);
- поясничный (5 позвонков);
- крестцовый (5 позвонков, сросшихся в единую кость – крестец);
- копчик (3-5 небольших сросшихся позвонков образуют одну кость. Это пример редуцированного хвоста).
Позвонки разных отделов имеют свои отличительные признаки. Общая закономерность такова, что размер тел позвонков увеличивается сверху вниз. Самые крупные свободные позвонки в поясничном отделе. Между телами позвонков находятся эластичные межпозвоночные диски, состоящие из хрящевой ткани. Дуги каждого позвонка образуют отверстие, в котором проходит спинной мозг.
Естественные изгибы позвоночника имеют свои названия – шейный и поясничный лордозы (изгибы вперед), грудной и крестцовый кифозы (изгибы назад). Боковой изгиб называется сколиозом, в норме его не должно быть. Изгибы необходимы для амортизации: позвоночник работает как пружина между ногами и головным мозгом, смягчая тряску и удары при ходьбе, беге. Без лордозов и кифозов прямохождение было бы невозможным.
Рёбра
Рёбра, прикрепленные к позвоночнику, образуют грудную клетку. Сзади она ограничена грудным отделом позвоночника и задними отрезками ребер, спереди – грудиной и реберными хрящами. Грудная клетка придает форму грудной полости и защищает такие важные органы как сердце, лёгкие, трахея, пищевод.
Цифрами обозначены: 1 – ребра; 2 – реберный хрящ истинных ребер; 3 – реберный хрящ ложных ребер; 4 – реберный угол; 5 – реберная дуга;
Двенадцать пар ребер можно разделить на три группы. Первая группа – «истинные» ребра, с 1-го по 7-е; они крепятся непосредственно к грудине с помощью хрящей, образуя полуподвижное сочленение. Ребра с 8-е по 10-е называют «ложными», так как их хрящи крепятся не к грудине, а к хрящам вышележащих ребер. 11 и 12 ребра называют «колеблющимися», их концы не закреплены и свободно лежат в толще мышц.
Череп
Череп человека образован парными и непарными костями, срастающимися в процессе взросления организма. Единственная подвижная кость черепа – нижняя челюсть. Различают мозговой и висцеральный (лицевой) отделы черепа.
Кости мозгового отдела достаточно массивные, они образуют черепную коробку, которая защищает головной мозг от повреждений. Сюда относят: лобную, парные теменные и височные, затылочную кость. Височные кости содержат в себе сложную систему каналов, где проходят крупные кровеносные сосуды, находятся органы слуха и равновесия. В затылочной кости находится большое затылочное отверстие, через которое сообщаются полости спинного мозга и головного.
Висцеральный скелет образует рельеф лица, глазницы, носовые ходы. Кости в нем небольшие, могут иметь тонкие стенки и полости внутри, что делает их легкими.
Конечности
Конечности не крепятся непосредственно к осевому скелету, для этого служат пояса конечностей. Пояс верхних конечностей представлен лопаткой и ключицей. Благодаря наличию ключицы человек может разводить руки в стороны, в то время как некоторые животные (например, лошади, собаки) на такое движение не способны. Пояс нижних конечностей составляют три пары сросшихся костей таза: лобковые, подвздошные и седалищные кости.
Кости рук и ног
Верхняя и нижняя конечности имеют схожее строение: по одной кости в бедре и плече, по две в голени и предплечье. Две кости в дистальных отделах конечностей позволяют совершать вращательные движения кистью и стопой.
Скелет ноги образован бедренной костью с шаровидной головкой, сочленяющейся с тазом, большой и малой берцовыми костями, костями предплюсны, плюсны и пальцев стопы.
Скелет руки схожим образом состоит из плечевой, лучевой и локтевой костей, костей запястья, пясти и пальцев кисти. Локтевая кость больше лучевой, имеет крупную головку, образующую локтевой сустав.
Каждый палец состоит из трех фаланг: дистальной, проксимальной и средней. Большой палец образован всего двумя фалангами, на кисти он расположен отдельно от остальных. Такое противопоставление большого пальца позволяет совершать хватательные движения, держать в руке предметы.
Соединение костей
Есть несколько форм соединения костей. Подвижное соединение называется суставом. Чем свободнее сочленение в суставе, тем больше движений могут совершать кости друг относительно дуга и тем больше уязвимость такого соединения. В месте соединения костей их покрывает суставная сумка, которая защищает место соединения и вырабатывает суставную жидкость. Снаружи суставная сумка укреплена связками, которые предотвращают ее от разрывов и растяжений. Поверхности костей внутри суставной сумки покрыты хрящом. Гладкая поверхность хряща и наличие суставной жидкости не дают костям истираться при движении.
Другой вариант соединения –полуподвижное сочленение. Таким образом ребра соединены с грудиной, позвонки примыкают друг к другу. Полуподвижные сочленения более надежны, в них реже происходят растяжения связок или вывихи.
Третий тип соединения – костный шов, неподвижное сочленение. Так соединены кости черепа, таза.
Мышцы
Для того, чтобы привести в движение кости скелета, необходимы мышцы. Это уникальные органы тела, способные быстро изменять свою форму (сокращаться) под действием нервных импульсов двигательных нейронов. К опорно-двигательной системе относят поперечно-полосатые (скелетные) мышцы, их отличает произвольность сокращения (человек способен сознательно контролировать их сокращение и расслабление).
Строение мышцы
Скелетные мышцы крепятся к костям при помощи нерастяжимых сухожилий. Мышца лежит внутри сумки из соединительной ткани, фасции, и состоит из нескольких мышечных пучков. Каждый пучок также покрыт фасциальной оболочкой. Пучки состоят из мышечных волокон, каждое волокно состоит из клеток.
Каждая мышечная клетка образована слиянием нескольких, она имеет много ядер и огромное число митохондрий, которые необходимы для получения энергии. Внутри вдоль клетки тянутся пучки сократительных белков – миофибриллы.
Механизм сокращения мышц
Основные сократительные белки мышечной клетки – актин и миозин. Используя энергию АТФ, миозиновая головка скользит по цепочке актина, как будто вытягивает канат. Актин смещается и вместе с ним сжимается вся клетка. Чтобы запустить процесс сокращения, необходимы ионы кальция, для расслабления нужны ионы магния. Таким образом, нарушение электролитного состава крови может вызывать судороги.
Возле мембраны в мышечной клетке находятся резервуары с ионами кальция. При поступлении нервного импульса в мембране открываются кальциевые каналы, незначительное число ионов попадают в цитоплазму клетки. Небольшое повышение внутриклеточной концентрации кальция активирует каскады, в результате которых кальций высвобождается из внутриклеточных депо, его количество растет лавинообразно, клетка сокращается.
В мышцах есть особенный тип рецепторов – проприорецепторы. Они отвечают за контроль напряжения мышечных пучков. Человек с закрытыми глазами, не видя свои конечности, все равно знает, в каком положении они находятся. Это происходит оттого, что мозг анализирует информацию от проприорецепторов и «знает», какие именно мышцы в данный момент напряжены.
Ответ любой мышцы зависит от силы пришедшего импульса. Существует порог возбуждения, то есть минимальная сила импульса, начиная с которой мышца начинает сокращаться. При постепенном увеличении мышца достигает своего максимума силы сокращения, при котором задействованы все двигательные единицы.
Чувствительность мышц к возбуждению различна. Самые трудновозбудимые мышцы – бедренные, управляющие движением ноги. Самые чуткие – мышцы глаз, так как движения глазного яблока должны быть максимально точными.
Самую большую силу развивают жевательные мышцы, на коренных зубах человека они способны развить усилие до 72 кг. Икроножная мышца самая сильная на растяжение, она способна удержать вес около 130 кг.
Единственными скелетными мышцами, которые не крепятся к костям, являются мимические мышцы. Они необходимы для передачи эмоций и общения в социуме.
Для нормального движения необходима согласованная работа мышц. Есть несколько основных типов взаимодействия между мышцами: синергизм и антагонизм. Мышцы-синергисты совершают работу в одном направлении, мышцы-антагонисты – в разных, они совершают работу в противофазе (при сокращении одной мышцы вторая расслабляется и наоборот). Пример мышц-антагонистов: двуглавая (бицепс) и трехглавая (трицепс) мышцы плеча, первая сгибает руку в локтевом суставе, вторая разгибает.
- плюсна
- бедренная кость
- предплюсна
- малоберцовая кость
- фаланги пальцев
Попробуем без картинки. Плюсна и предплюсна с фалангами пальцев- аналог запястья и пястья с фалангами пальцев. Это кости стопы Из крупных костей имеются бедренная и берцовая. Бедро у нас находятся высоко, логично, что бедренная в данном списке будет первой: После нее берцовые кости, у нас в списке одна: Предплюсна. Не зря здесь стоит приставка «пред». Сначала идет предплюсна, затем плюсна, потом фаланги. | ![]() |
Ответ: 24315
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
- кости пясти
- плечевая кость
- фаланги пальцев
- лучевая кость
- кости запястья
Прикинем без рисунка: Начнется все с плечевой кости, а закончится фалангами пальцев: Кости пясти и запястья находятся перед ладонью и в ладони, значит, перед ними идет лучевая Приставка «за» означает что кость находится перед. То есть кости Запястья находятся перед костями пястья, если смотреть со стороны плеча. | ![]() |
Ответ: 24513
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
- поясничный
- грудной
- хвостовой
- крестцовый
- шейный
Это совсем несложно: Вначале, естественно, шейный отдел. Затем грудной. Потом поясничный. Крестец. И хвостовой отдел. | ![]() |
Ответ: 52143
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
- лобная кость
- затылочная кость
- височная кость
- теменная кость
- нижнечелюстная кость
- скуловая кость
- Верно
- Неверно, это теменная кость
- Неверно, это затылочная кость
- Неверно, это височная кость
- Верно
- Верно
Ответ: 156
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
- сердечная мышечная
- железистая эпителиальная
- гладкая мышечная
- нервная
- рыхлая соединительная
- поперечнополосатая мышечная
Свойствами возбудимости и сократимости обладает мышечная ткань: сердечная мышечная, гладкая мышечная, поперечнополосатая мышечная.
Ответ: 136
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
- состоит из многоядерных волокон
- состоит из вытянутых клеток с овальным ядром
- обладает большей скоростью и энергией сокращения
- составляет основу скелетной мускулатуры
- располагается в стенках внутренних органов
- сокращается медленно, ритмично, непроизвольно
Гладкая мышечная ткань выстилает полости органов. Она не многоядерна, как поперечно-полосатая.
Зная, что гладкая мышечная ткань выстилает органы, а поперечно полосатая — скелетные мышцы, нетрудно догадаться, что гладкая сокращается медленно и непроизвольно.
Ответ: 256
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
К свободной верхней конечности относится рука. Если пока не вдаваться в подробности с костями, которые ее составляют, то нужно просто запомнить три отдела: плечо, предплечье, кисть.
Плечо начинается плечевым суставом, а заканчивается локтевым суставом.
Предплечье, соответственно, должно заканчиваться локтем, а начинается от запястья включительно.
Кисть — косточки, составляющие ладонь и фаланги пальцев.
Ответ: плечо
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Даниил Романович | ???? Скачать PDF | Просмотров: 7.3k | Оценить:
Источник
Строение мышц человека
Анатомия мышц человека, их строение и развитие, пожалуй, можно назвать той самой наиболее актуальной темой, которая вызывает максимальный общественный интерес к культуризму. Стоит ли говорить о том, что именно строение, работа и функции мышц это та тема, которой персональный тренер должен уделять особое внимание. Как и в изложении других тем, введение в курс мы начнем с детального изучения анатомии мышц, их строения, классификации, работы и функций.
Введение
Ведение здорового образа жизни, правильное питание и систематическая физическая активность способствуют развитию мускулатуры и снижению уровня жира в организме. Строение и работы мышц человека будут понятны лишь при последовательном изучении сначала скелета человека и только затем мышц. И теперь, когда из статьи «Строение скелета человека» мы знаем, что он, в том числе выполняет функцию каркаса для крепления мышц, настало самое время изучить, какие же основные группы мышц формируют тело человека, где они находятся, как они выглядят и какие функции выполняют.
Выше вы можете видеть, как выглядит строение мышц человека на фото (3D модель). Сначала рассмотрим мускулатуру тела мужчины с терминами, применяемыми к бодибилдингу, затем мускулатуру тела женщины. Забегая наперед, стоит заметить, что строение мышц у мужчин и женщин принципиальных отличий не имеет, мускулатура тела практически полностью сходна.
Анатомия мышц человека
Мышцами называются органы тела, которые формирует эластичная ткань, и активность которой регулируется нервными импульсами. Функции мышц – это в том числе, движение и перемещение в пространстве частей тела человека. Полноценное их функционирование непосредственно влияет на физиологическую активность множества процессов в организме. Работа мышц регулируется нервной системой. Она способствует их взаимодействию с головным и спинным мозгом, а также участвует в процессе преобразования химической энергии в механическую. Тело человека формирует порядка 640 мышц (различные методы подсчета дифференцированных групп мышц, определяют их число от 639 до 850). Ниже приведено строение мышц человека (схема) на примере мужского и женского тела.
Строение мышц мужчины, вид спереди: 1 – трапеции; 2 – передняя зубчатая мышца; 3 – наружные косые мышцы живота; 4 – прямая мышца живота; 5 – портняжная мышца; 6 – гребенчатая мышца; 7 – длинная приводящая мышца бедра; 8 – тонкая мышца; 9 – напрягатель широкой фасции; 10 – большая грудная мышца; 11 – малая грудная мышца; 12 – передняя головка плеча; 13 – средняя головка плеча; 14 – брахиалис; 15 – пронатор; 16 – длинная головка бицепса; 17 – короткая головка бицепса; 18 – длинная ладонная мышца; 19 – экстензорная мышца запястья; 20 – длинная приводящая мышца запястья; 21 – длинный сгибатель; 22 – лучевой сгибатель запястья; 23 – плечелучевая мышца; 24 – латеральная мышца бедра; 25 – медиальная мышца бедра; 26 – прямая мышца бедра; 27 – длинная малоберцовая мышца; 28 – длинный разгибатель пальцев; 29 – передняя большеберцовая мышца; 30 – камбаловидная мышца; 31 – икроножная мышца
Строение мышц мужчины, вид сзади: 1 – задняя головка плеча; 2 – малая круглая мышца; 3 – большая круглая мышца; 4 – подостная мышца; 5 – ромбовидная мышца; 6 – экстензорная мышца запястья; 7 – плечелучевая мышца; 8 – локтевой сгибатель запястья; 9 – трапециевидная мышца; 10 – прямая остистая мышца; 11 – широчайшая мышца; 12 – грудопоясничная фасция; 13 – бицепс бедра; 14 – большая приводящая мышца бедра; 15 – полусухожильная мышца; 16 – тонкая мышца; 17 – полуперепончатая мышца; 18 – икроножная мышца; 19 – камбаловидная мышца; 20 – длинная малоберцовая мышца; 21 – мышца отводящая большой палец стопы; 22 – длинная головка трицепса; 23 – латеральная головка трицепса; 24 – медиальная головка трицепса; 25 – наружные косые мышцы живота; 26 – средняя ягодичная мышца; 27 – большая ягодичная мышца
Строение мышц женщины, вид спереди: 1 – лопаточно подъязычная мышца; 2 – грудинно-подъязычная мышца; 3 – грудинно-ключично-сосцевидная мышца; 4 – трапециевидная мышца; 5 – малая грудная мышца (не видна); 6 – большая грудная мышца; 7 – зубчатая мышца; 8 – прямая мышца живота; 9 – наружная косая мышца живота; 10 – гребенчатая мышца; 11 – портняжная мышца; 12 – длинная приводящая мышца бедра; 13 – напрягатель широкой фасции; 14 – тонкая мышца бедра; 15 – прямая мышца бедра; 16 – промежуточная широкая мышца бедра (не видна); 17 – латеральная широкая мышца бедра; 18 – медиальная широкая мышца бедра; 19 – икроножная мышца; 20 – передняя большеберцовая мышца; 21 – длинный разгибатель пальцев стопы; 22 – длинная большеберцовая мышца; 23 – камбаловидная мышца; 24 – передний пучок дельт; 25 – средний пучок дельт; 26 – плечевая мышца брахиалис; 27 – длинный пучок бицепса; 28 – короткий пучок бицепса; 29 – плечелучевая мышца; 30 – лучевой разгибатель запястья; 31 – круглый пронатор; 32 – лучевой сгибатель запястья; 33 – длинная ладонная мышца; 34 – локтевой сгибатель запястья
Строение мышц женщины, вид сзади: 1 – задний пучок дельт; 2 – длинный пучок трицепса; 3 – латеральный пучок трицепса; 4 – медиальный пучок трицепса; 5 – локтевой разгибатель запястья; 6 – наружная косая мышца живота; 7 – разгибатель пальцев; 8 – широкая фасция; 9 – бицепс бедра; 10 – полусухожильная мышца; 11 – тонкая мышца бедра; 12 – полуперепончатая мышца; 13 – икроножная мышца; 14 – камбаловидная мышца; 15 – короткая малоберцовая мышца; 16 – длинный сгибатель большого пальца; 17 – малая круглая мышца; 18 – большая круглая мышца; 19 – подостная мышца; 20 – трапециевидная мышца; 21 – ромбовидная мышца; 22 – широчайшая мышца; 23 – разгибатели позвоночника; 24 – грудопоясничная фасция; 25 – малая ягодичная мышца; 26 – большая ягодичная мышца
Мышцы отличаются довольно разнообразной формой. Мышцы, имеющие общее сухожилие, но обладающие двумя или более головками, называются двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс). Функции мышц так же довольно разнообразны, это сгибатели, разгибатели, отводящие, приводящие, вращатели (кнутри и кнаружи), поднимающие, опускающие, выпрямляющие и другие.
Типы мышечной ткани
Характерные черты строения позволяют классифицировать мышцы человека по трем типам: скелетные, гладкие и сердечную.
Типы мышечной ткани человека: I- скелетные мышцы; II- гладкие мышцы; III- сердечная мышца
- Скелетные мышцы. Сокращение данного типа мышц полностью контролируется человеком. Объединенные со скелетом человека, они образуют опорно-двигательный аппарат. Скелетными данный тип мышц называют именно по причине их крепления к костям скелета.
- Гладкие мышцы. Данный тип ткани присутствует в составе клеток внутренних органов, кожи и кровеносных сосудов. Строение гладких мышц человека подразумевает их нахождение по большей части в стенках полых внутренних органов, таких как пищевод или мочевой пузырь. Также они играют важную роль в процессах, не контролируемых нашим сознанием, например в моторике кишечника.
- Сердечная мышца (миокард). Работу данной мышцы контролирует вегетативная нервная система. Ее сокращения не контролируются сознанием человека.
Поскольку сокращение гладкой и сердечной мышечной ткани не контролируется сознанием человека, акцент в данной статье мы сосредоточим именно на скелетных мышцах и подробном их описании.
Строение мышц
Мышечное волокно является структурным элементом мышц. По отдельности, каждое из них представляет собой не только клеточную, но и физиологическую единицу, которая способна сокращаться. Мышечное волокно имеет вид многоядерной клетки, диаметр волокна находится в диапазоне от 10 до 100 мкм. Эта многоядерная клетка находится в оболочке, называемой сарколеммой, которая в свою очередь наполнена саркоплазмой, а уже в саркоплазме находятся миофибриллы.
Миофибрилла представляет собой нитевидное образование, которое состоит из саркомеров. В толщину миофибриллы, как правило, составляют менее 1 мкм. С учетом количества миофибрилл, обычно различают белые (они же – быстрые) и красные (они же – медленные) мышечные волокна. Белые волокна содержат больше миофибрилл, но меньше саркоплазмы. Именно по этой причине они сокращаются быстрее. Красные волокна содержат много миоглобина, потому и получили такое название.
Внутреннее строение мышцы человека: 1 – кость; 2 – сухожилие; 3 – мышечная фасция; 4 – скелетная мышца; 5 – фиброзная оболочка скелетной мышцы; 6 – соединительно-тканная оболочка; 7 – артерии, вены, нервы; 8 – пучок; 9 – соединительная ткань; 10 – мышечное волокно; 11 – миофибрилла
Работа мышц характерна тем, что способность быстрее и сильнее сокращаться, свойственна именно белым волокнам. Они могут развивать усилие и скорость сокращения в 3-5 раз выше, чем медленные волокна. Физическая активность анаэробного типа (работа с отягощениями) выполняется преимущественно быстрыми мышечными волокнами. Длительная аэробная физическая активность (бег, плавание, велосипед) выполняется преимущественно медленными мышечными волокнами.
Медленные волокна более устойчивы к утомлению, в то же время, быстрые волокна к продолжительной физической активности не приспособлены. Что касается соотношения быстрых и медленных мышечных волокон в мышцах человека, то их количество примерно одинаково. У большей части обоих полов, порядка 45-50% мышц конечностей составляют медленные мышечные волокна. Сколько ни будь значительных половых различий в соотношении различных типов мышечных волокон у мужчин и женщин нет. Их соотношение формируется в начале жизненного цикла человека, иными словами является генетически запрограммированным и до самой старости практически не меняется.
Саркомеры (составные компоненты миофибрилл) формируются толстыми миозиновыми нитями и тонкими актиновыми нитями. Остановимся на них более детально.
Актин – белок, являющийся структурным элементом цитоскелета клеток и обладающий способностью сокращаться. Состоит из 375 остатков аминокислот, и составляет порядка 15% мышечного белка.
Миозин – главный компонент миофибрилл – сократительных волокон мышц, где его содержание может составлять порядка 65%. Молекулы сформированы двумя полипептидными цепочками, каждая из которых содержит около 2000 аминокислот. Каждая из таких цепочек имеет на конце так называемую головку, которая включает две маленькие цепочки, состоящие из 150-190 аминокислот.
Актомиозин – комплекс белков, сформированный из актина и миозина.
ФАКТ. По большей части, мышцы состоят из воды, белков и прочих компонентов: гликогена, липидов, азотсодержащих веществ, солей и т. д. Содержание воды колеблется в диапазоне 72-80% от общей массы мышц. Скелетная мышца состоит из большого количества волокон, и что характерно, чем их больше, тем мышца сильнее.
Классификация мышц
Мышечная система человека характерна разнообразием формы мышц, которые в свою очередь делятся на простые и сложные. Простые: веретенообразные, прямые, длинные, короткие, широкие. К сложным можно отнести многоглавые мышцы. Как мы уже говорили, если у мышц общее сухожилие, а головок две или больше, то их называют двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс), так же к многоглавым относятся многосухожильные и двубрюшные мышцы. К сложным относятся и следующие типы мышц с определенной геометрической формой: квадратные, дельтовидные, камбаловидные, пирамидальные, круглые, зубчатые, треугольные, ромбовидные, камбаловидные.
Основные функции мышц это сгибание, разгибание, отведение, приведение, супинация, пронация, поднятие, опускание, выпрямление и не только. Под термином супинация подразумевается вращение кнаружи, а под термином пронация – вращение кнутри.
По направлению волокон мышцы делят на: прямые, поперечные, круговые, косые, одноперистые, двуперистые, многоперистые, полусухожильные и полуперепончатые.
По отношению к суставам, учитывая число суставов, через которые они перекидываются: односуставные, двусуставные и многосуставные.
Работа мышц
В процессе сокращения нити актина проникают глубоко в промежутки между нитями миозина, причём длина обеих структур не меняется, а лишь сокращается общая длина актомиозинового комплекса – такой способ сокращения мышц называется скользящим. Скольжение актиновых нитей вдоль миозиновых нуждается в энергии, а энергия, необходимая для сокращения мышц, освобождается в результате взаимодействия актомиозина с АТФ (аденозинтрифосфат). Кроме АТФ важную роль в сокращении мышц играет вода, а также ионы кальция и магния.
Как уже говорилось, работа мышц полностью контролируется нервной системой. Это говорит о том, что их работой (сокращением и расслаблением) можно управлять сознательно. Для нормального и полноценного функционирования организма и передвижения его в пространстве, мышцы работают группами. Большая часть мышечных групп тела человека работает в парах, и выполняют противоположные функции. Выглядит это таким образом, что когда мышца «агонист» сокращается, мышца «антагонист» растягивается. То же справедливо и наоборот.
- Агонист – мышца, выполняющая определенное движение.
- Антагонист – мышца, выполняющая противоположное движение.
Мышцы обладают такими свойствами: эластичность, растяжение, сокращение. Эластичность и растяжение дают мышцам возможность меняться в размере и возвращаться к исходному состоянию, третье качество дает возможность создать усилие на ее концах и приводить к укорачиванию.
Нервное стимулирование может вызвать следующие типы мышечного сокращения: концентрическое, эксцентрическое и изометрическое. Концентрическое сокращение возникает в процессе преодоления нагрузки при выполнении заданного движения (подъем вверх при подтягиваниях на перекладине). Эксцентрическое сокращение возникает в процессе замедления движений в суставах (