Сложный изгиб растяжением сжатием

Сложное сопротивление

Сложное сопротивление – одновременное действие на брус нескольких простых видов деформаций: растяжения-сжатия, сдвига, кручения и изгиба. Например, совместное действие растяжения и кручения.

Косой изгиб.

Косой изгиб – это изгиб, при котором плоскость действия изгибающего момента не совпадает ни с одной из главных плоскостей инерции сечения бруса.

В общем случае при косом изгибе в поперечных сечениях возникают четыре внутренних силовых фактора: поперечные силы Qx, Qy и изгибающие моменты Mx , My. Таким образом, косой изгиб можно рассматривать как сочетание двух плоских поперечных изгибов во взаимно перпендикулярных плоскостях. Влиянием поперечных сил на прочность и жесткость бруса обычно пренебрегают.

Косой изгиб

Нейтральная линия при косом изгибе всегда проходит через центр тяжести сечения.

Условие прочности при косом изгибе:

где ymax, xmax — координаты точки сечения, наиболее удаленной от нейтральной оси.

Для сечений, имеющих две оси симметрии, максимальные напряжения будут в угловых точках, а условие прочности:

где Wx , Wy – осевые моменты сопротивления сечения относительно соответствующих осей.

Если материал бруса не одинаково работает на растяжение и на сжатие, то проверку его прочности выполняют по допускаемым и растягивающим и сжимающим напряжениям.

Прогибы при косом изгибе определяют, используя принцип независимости действия сил, геометрическим суммированием прогибов вдоль направления главных осей:

Изгиб с растяжением (сжатием).

При таком виде сложного сопротивления внутренние силовые факторы приводятся к одновременному действию продольной силы N и изгибающего момента M.

Рассмотрим случай центрального растяжения бруса в сочетании с косым изгибом. На консольный брус действует сила F, составляющая некоторый угол с продольной осью бруса и не лежащая ни в одной из главных плоскостей сечения. Сила приложена в центре тяжести торцевого сечения бруса:

изгиб с растяжением

К расчёту на прочность бруса при изгибе с растяжением:

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Разложим силу F на три составляющие. Тогда внутренние силовые факторы приобретут следующий вид:

Напряжение в произвольно выбранной точке Д, имеющей координаты (хд, уд), пренебрегая действием поперечных сил, будут определяться по формуле:

где А — площадь поперечного сечения.

Если сечение имеет две оси симметрии (двутавр, прямоугольник, круг), наибольшее напряжение определяют по формуле:

Условие прочночти имеет вид:

Также как и в случае косого изгиба, если материал бруса не одинаково работает на растяжение и на сжатие, то проверку прочности проводят по допускаемым растягивающим и сжимающим напряжениям.

Внецентренное растяжение или сжатие.

При таком виде сложного сопротивления продольная сила приложена не в центре тяжести поперечного сечения бруса.

внецентренное растяжение или сжатие

К расчёту на прочность бруса при внецентренном растяжении

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Приведём силу F к центру тяжести:

где уF , xF — координаты точки приложения силы F.

В произвольной точке Д, с координатами (хд, уд), нормальное напряжение определяется по фомуле:

Условие прочности для бруса, изготовленного из материала, одинаково сопротивляющегося растяжению и сжатию, имеет вид:

Для бруса, который неодинаково работает на растяжение и на сжатие проверка прочности по допускаемым растягивающим и сжимающим напряжениям.

Кручение с изгибом.

Сочетание деформаций изгиба и кручения характерно для работы валов машин.

Кручение с изгибом

Напряжения в сечениях вала возникают от кручения и от изгиба. При изгибе появляются нормальные и касательные напряжения:

Напряжения в сечениях вала от кручения и от изгиба

Эпюры напряжений в сечении бруса при кручении с изгибом

Нормальное напряжение достигает максимума на поверхности:

Касательное напряжение от крутящего момента Mz достигает максимума также на поверхности вала:

Из третьей и четвёртой теории прочности:

При кручении с изгибом условие прочности имеет вид:

Источник

Изгиб с растяжением (сжатием)

Содержание:

  • Изгиб с растяжением (сжатием)

Изгиб с растяжением (сжатием)

  • Изгиб с натяжением (сжатие)) Расчет совместного действия изгиба и растяжения можно свести к следующим двум основным видам: а) расчет на действие продольных и поперечных нагрузок; б) расчет на действие внецентрового натяжения. Отдельно необходимо учитывать изгиб при растяжении (сжатии) кривой SA (br). Сложный изгиб за счет растяжения (сжатия) прямого стержня. В целом(рис. 325, а) в поперечном сечении изгибается момент L4g и M y в двух
Читайте также:  Как отличить вывих шеи от растяжения

плоскостях, поперечная сила Qz и Quy и продольная сила N(рис. 325, б). В этом случае возникают сложные изгибы Рис триста двадцать пять Растянуть или сжать. Нормальное напряжение в любой точке поперечного сечения (12.19) Изгибающие моменты, продольные силы и координаты точек, в которых рассчитываются напряжения, заменяются здесь их знаками

. Можно предположить, что напряженное состояние в опасной точке является линейным, игнорируя тангенциальное напряжение от боковой силы. Поэтому

Людмила Фирмаль

условия интенсивности имеют простейшую форму: (12.20 утра)) Если сечение имеет две оси симметрии и выступающий угол, то одна из угловых точек опасна. Напряжение в ее aprds- 338, согласно формуле (12.19) или так 1: 1 при изгибе на сжатие приведенная выше формула может быть применена только к короткому стержню высокой жесткости, поскольку потеря устойчивости возможна в случае тонкого длинного стержня (№ 19). (12.21)

Символы в этом выражении объединяются на основе комбинации или комбинации с выражением (12.19). В случае плоского изгиба в основной плоскости UX с растяжением (сжатием) трехчленное кольцо является одним из двухчленных колец: Эти формулы используются при расчете прочности плоских рам и арок малой кривизны. В этом случае опасность представляет та часть, где действует максимальный изгибающий момент L4max. В случае

  • расчета стержня с поперечным сечением любой формы для определения опасных точек сечения, метод определения положения нейтральной линии должен сначала установить все положения нейтральной линии, которые будут рассмотрены ниже при рассмотрении смещенного от центра участка. Пример 51. Выберите сечение двутавровой балки плоского стального каркаса (рис. 326, а) [о]=1600 кгс / см2*. Путем определения эталонной реакции и графика мг и / в(Фиг. 326, b, C), участок d правой стойки опасен, L1m AKS=57 * 104kgf * cm; N=-63,9 * 102kgf. Опасные точки этого участка находятся слева(рис. Здесь, потому что напряжение от Mz и L’is добавлено

арифметически, 326, g). В соответствии с формулой (12.22) условие прочности записывается следующим образом: 57 * 101 Макс° 63.9 * 102 Ф кг / СМ1 1600кг / см2. (12.23) Условия интенсивности It-339z включают две неизвестные величины? И еще F. In в большинстве случаев напряжение o>от изгиба больше продольной силы, поэтому при выборе сечения}опустите второе слагаемое первым, а приблизительное значение U7″ 11,^л ш «с м3= = 3 5 6°’ 3 — Затем, согласно ассортименту (Приложение 1), нужно выбрать двутавровый пучок, но нужно выбрать двутавровый пучок № 27, выбрать 371 см3, F=40,2 см2 и проверить интенсивность выбранного участка.»——1″ «~ ^ ) ’2 ~ ~ C g s / cm2″1526+159kgs / cm2=1695KGE^m2. Перенапряжений 1695-1600 100% и 6%>5%, Шестьсот тысяч Поэтому, принимая следующее большее число двутавровых балок 27a

(U’2=407 см», F= = 43. 2cm2), необходимо увеличить размер поперечного сечения

Людмила Фирмаль

Вытягивать прямого луча нецентральный (обжатие). Ядро секции. Смещенное от центра растяжение(сжатие)-это комплекс, который предполагает растяжение (сжатие) таким образом, что балка растягивается силой, параллельной оси балки и в результате не совпадающей с осью балки 327), и проходит через точку Р, пусть одна сила Р называется силовым полюсом, параллельным оси бруса и поперечным сечением ее выступает как 327)координаты этой точки в системе главной оси сечения обозначаются gr, а расстояние этой точки до оси x, которое называется эксцентриситетом, секция R9M G= = Рур при таких нагрузках. Следовательно, напряжение в любой точке поперечного сечения добавляется к осевым растягивающим силам N

и Hi — и Mg4—y-g+ Моменты 13mf для напряжения на изгиб/ — А я-нет!’jy АF ЮЖД Если вы поставите его здесь вместо N, Mv, Mz, вы получите P г о= — у-(12.24) (12.25)) 340 этой формуле можно придать несколько иную форму, выражая главный момент инерции через радиус инерции: (12.26) Для выявления опасных точек сложного профиля рекомендуется создать нейтральную линию поперечного сечения. Угроза сечения будет представлять собой точку, наиболее удаленную от нейтральной линии. Уравнение нейтральной линии получается путем уравнивания правой части уравнения (12.26) к нулю

, указывая координаты точек на нейтральной линии, проходящих через y0 и z0: g L2O+^Y o=-1-(12.27) 328):zH= — v -; (2.28) следует из зависимости (12.28), где нейтральная линия пересекает координатные оси в точке, принадлежащей квадранту, противоположному тому, в котором расположена точка p. Теперь, если вы проведете параллель к нейтрали на контуре разреза, вы найдете наиболее подчеркнутые точки A и B в расширенной и сжатой зонах разреза(рис. 328). Напряжение на этих точках и их силовое состояние имеет вид П Жульничество-Р Касательная

П Omnn- & в ЖП (12.29) +2л+уа^< ?CES2l, точка A и точка b-2, соответственно-I E. фигура напряжения o показана на рисунке. Для 328 прямоугольных поперечных сечений удобнее представить условия прочности в виде: °Тиахс—Р Б—— 1—— jp A<[O j. (12.30) Формулы (12.29)и (12.30) также эффективны в случае сил сжатия, когда отсутствует риск продольного изгиба. Ядро секции. До сих пор нейтральные линии изображались как проходящие через поперечное сечение, но в целом они, вероятно, выйдут за его пределы. На самом деле, если сила P приложена к центру 341тяжести, и нейтральная линия проходит бесконечно, поэтому напряжение в этом случае равномерно

распределяется по поперечной плоскости. По мере увеличения эксцентриситета е (рис. 329) нейтральная линия приближается к положению с поперечным сечением и силой Р(рис. Например, позиция 329 D3) сначала касается контура секции. При дальнейшем увеличении эксцентриситета нейтральная линия будет пересекать поперечное сечение, а нормальное напряжение сечения будет иметь оба знака. Рис триста двадцать девять Интересно установить область такого расстояния силы р от оси, при котором нормальное напряжение всего поперечного сечения становится одинаковым знаком. Эта область называется основной секцией. Это важно для брусков, изготовленных

из материалов, не сопротивляющихся растяжению (например, кирпич, бетон, серый чугун). Таким образом, сердцевина поперечного сечения представляет собой область вокруг центра тяжести поперечного сечения, и если нагрузка вне центра находится в области сердцевины, то нормальное напряжение во всех точках поперечного сечения имеет один знак. Чтобы построить сердцевину сечения, укажите различные положения нейтральной линии, касательной к контуру сечения, а затем примените силу Р по следующему уравнению, вытекающему из Формулы (12.28).): Вычисленные

координаты определяют точки, лежащие на границе ядра разреза. Для облегчения построения основного сечения используются следующие свойства нейтральной линии: когда нейтральная линия вращается вокруг неподвижной точки и контура сечения, она используется для приложения силы ок.- 342∙этой характеристики достаточно, чтобы заменить координаты точки а (стена,ОА), находящейся на нейтральной линии, уравнением (12.27). Возьми В Урва Г 1. (12.32) Фактически уравнение zqA=const(12.32), UOL=const является уравнением прямой относительно координат точек приложения силы P—(UR1 2P). Поэтому, чтобы построить ядро сечения фигуры,

нужно нарисовать ряд нейтральных позиций линий, совпадающих со сторонами сечения. Построим, например, сердцевину сечения прямоугольного БКД(рис. 330). Нейтральная линия совместима со стороной CD (позиция 1-1). Очевидно, в этом случае Б Ы и 2 * — 0 0 * Тогда из Формулы (12.31)) УР= Это считается I2 _ ООО; 12bh22′ Таким образом, определяются координаты точек G ядер Chay и I. Выровняйте нейтральную линию по рекламной стороне (позиция 2-2). Иметь х И / Четыре. Ан° » 2 Тогда координаты точки 2 ′ ядра Аналогичным образом определяются координаты точек 3-3 и 4-4, соответствующие

Читайте также:  Растяжение что это такое

положениям нейтральных линий 3 ’и 4′. С момента перехода нейтральной линии из одной стороны в другую она вращается вокруг угловой точки поперечного сечения, и точки силы движутся по прямой, образуя контур ядра. Итак, сердцевиной сечения будет ромб с диагональю, равной одной трети соответствующей стороны сечения. Пример 52. Построить сердцевину сечения для кругового сечения(рис. 331). В круге все центральные оси являются главными. Таким образом, если в любой точке А соприкасается с нейтральной

линией 1-1, то точка D также находится в проходящем диаметре 343 точки L, и ее координаты равны: Очевидно, можно сделать вывод, что благодаря симметрии сечения ядро сечения также становится окружностью с радиусом Рис 332Fig. Триста, тридцать, тридцать, тридцать, тридцать, тридцать три Конструкция центроплана для двутавровой балки (рис. 332), канал (фиг. 333) и треугольник(рис. 334) лидер рекомендует выполнять себя.

Смотрите также:

  • Учебник по сопротивлению материалов: сопромату

Источник

Растяжение и сжатие с изгибом

В инженерной практике часто имеют место случаи одновременного действия на стержень поперечных и продольных нагрузок, причем последние могут быть приложены внецентренно. Такой случай показан на рис. 11.26. При этом внутренние усилия в заделке равны:

Рис. 11.26

Рис. 11.27

В общем случае растяжения или сжатия с изгибом внутренние усилия определяются раздельно от действия всех составляющих нагрузок. Нормальные напряжения в поперечных сечениях определяются по общей формуле

Приравняв это выражение нулю, получим уравнение нулевой линии

Положив в этом уравнении последовательно у = 0 и z = О, получим формулы для определения отрезков, отсекаемых нулевой линией на осях координат:

Как и во всех рассмотренных выше случаях сложного сопротивления, наибольшие растягивающие и сжимающие напряжения действуют в точках сечения, наиболее удаленных от нулевой линии. Для сечений типа прямоугольника и двутавра это противоположные угловые точки сечения. Значения наибольших и наименьших напряжений в угловых точках можно определить по формулам:

где величины изгибающих моментов Mz и Му надо взять по абсолютной величине.

Напомним, что во всех предыдущих решениях использовался принцип независимости действия сил, позволяющий определять внутренние усилия для недеформированного состояния стержня. Строго говоря, это возможно только при малых деформациях. В противном случае принцип независимости действия сил использовать нельзя.

Читайте также:  Растяжение внутренней поверхности бедра симптомы

Рассмотрим, например, консольный стержень в условиях сжатия с изгибом (рис. 11.27). Если стержень обладает значительной гибкостью и прогибы от поперечной нагрузки достаточно велики, то сила Р вызывает дополнительный изгиб, а изгибающий момент в заделке от ее действия равен М = PvB. Для негибких стержней этот момент незначителен и его можно не учитывать. Для гибких стержней необходимо проводить расчет по так называемой деформированной схеме с учетом влияния продольных сил на изгиб. Подобные задачи будут рассмотрены в гл. 13.

Пример 11.7. Для короткого консольного деревянного стержня круглого сечения, находящегося в условиях центрального сжатия и изгиба в плоскости Oxz (рис. 11.28), построим эпюру о в опасном сечении.

Рис. 11.28

Определяем геометрические характеристики сечения:

Строим эпюры внутренних усилий N и Му (рис. 11.28, а). Изгибающий момент Му вызывает растяжение волокон левой половины стержня и имеет наибольшее значение в заделке: Му = — 4 • 1,2 • 0,6 = —2,88 кНм. Изгибающий момент Mz равен нулю. Определяем значения наибольших нормальных напряжений в точках А и В в сечении вблизи заделки:

Напряжения во всех точках сечения стержня являются сжимающими. Эпюры о в опасном сечении от действия N и М и суммарная эпюра с приведены на рис. 11.28, б.

Пример 11.8. Для стального стержня, состоящего из двух неравнобоких уголков L 160x100x10, находящегося в условиях центрального растяжения и изгиба в плоскости Оху (рис. 11.29, а), определим расчетное значение силы Р из условия прочности и построим эпюру о в опасном сечении. Совместная работа уголков обеспечена соединениями, показанными пунктиром. В расчетах примем R= 210 МПа = 21 кН/см2, ус = 0,9.

Рис. 11.29

Определяем геометрические характеристики сечения:

Строим эпюры N w Mz (рис. 11.29, а). Опасным является сечение в середине стержня, где Mz имеет наибольшее значение. В нижних волокнах стержня нормальные напряжения от действия N и Mz имеют одинаковый знак и являются растягивающими. Из условия прочности по наибольшим растягивающим напряжениям в точке А

находим Р 29,4 кН. При действии силы Р = 29,4 кН напряжения в точках А и В равны:

Эпюры о в опасном сечении от действия N w Mzw суммарная эпюра а приведены на рис. 11.29, б.

Пример 11.9. Для стального консольного стержня составного сечения, находящегося в условиях внецентренного растяжения и изгиба (рис. 11.30, а), выполним проверку прочности и построим эпюру а в опасном сечении. В расчетах примем /? = 210 МПа, ус — 0,9.

Построим эпюры N, Mz, Му. Изгибающий момент Mz вызывает растяжение верхних волокон стержня и в заделке равен Mz = —10 • 3,6 — 15 • 1,8 = —63 кНм, а момент М вызывает растяжение волокон левой части сечения (при взгляде от положительного направления оси Ох) и имеет постоянное значение Му = —300 • 0,0625 = —18,75 кНм. Продольная сила является растягивающей и также имеет постоянное значение N = 300 кН.

Наибольшие нормальные напряжения действуют в сечении вблизи заделки (опасное сечение).

Рис. 11.30

Определяем геометрические характеристики сечения. Учитывая, что для двутавра 124 Fx = 34,8 см2, J = 3460 см4, Jy = = 198 см4, b = 11,5 см, И = 24 см, находим:

Наибольшие напряжения действуют в противоположных угловых точках опасного сечения. Определяем по формулам (11.17) отрезки, отсекаемые нулевой линией на осях координат. Учитывая, что в первой четверти сечения моменты Mz и Му вызывают сжатие и имеют отрицательный знак, находим:

Отложив у0 и Zq на осях координат, проводим нулевую линию. На прямой, перпендикулярной нулевой линии, строим эпюру о (рис. 11.30, б), которая является разнозначной. Наибольшие растягивающие напряжения возникают в точке Л . Напряжения в точках Л и В равны:

Поскольку оА = 123,7 МПа ycR = 189 МПа, прочность стержня обеспечена. Эпюра с в опасном сечении приведена на рис. 11.30, б.

Источник