Ступенчатый брус растяжение сжатие
Содержание статьи
Задача 1. Решение. Рис. 1 Ступенчатый брус
Числовые данные к задаче 2
ЗАДАЧА Абсолютно жесткий брус АВ опирается на шарнирно-неподвижную опору и прикреплен с помощью шарниров к двум стальным стержням. ребуется подобрать сечения стержней по условию их прочности, приняв запас
Подробнее
СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ
Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно
Подробнее
Расчеты стержней на прочность и жесткость
Расчеты стержней на прочность и жесткость 1. Стержень с квадратным поперечным сечением а=20см (см. рисунок) нагружен силой. Модуль упругости материала E=200ГПа.. Допускаемое напряжение. Допустимое перемещение
Подробнее
Решение: Исходные данные: = 2 = 2 = 2
Задача 1 Для данного бруса требуется: — вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; — построить эпюру продольных сил; — построить эпюру напряжений; — для
Подробнее
По предпоследней цифре матрикула
Растяжение-сжатие Работа a Определить при каком значении растягивающей силы F стальной стержень ступенчатого сечения (рис.а) удлинится на мм. Определить при найденной величине F нормальные напряжения в
Подробнее
Указания к выполнению контрольной работы 3
Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе
Подробнее
Задача 1.1 В-64 (условие 6, схема 4)
Задача. В- (условие, схема ) Дано: А = 0 мм, a 0 = мм, в = 0 мм, с = 0 мм, d = 00 мм, e = 0 мм, F = 00 Н, E 5 = 0 Па, [ ] 0 Па σ =, ρ = 7,7 0 кг / м,. Решение. II. Ступенчатый стержень нагружен сосредоточенными
Подробнее
Лекция 2 (продолжение)
Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Расчет статически неопределимых стержневых систем на растяжениесжатие. Расчеты по допускаемым напряжениям
Подробнее
5. Примеры решения задач Примеры решения задач в контрольной работе 1
d c а 34 5. Примеры решения задач 5.1. Примеры решения задач в контрольной работе 1 Задача 1 (пример расчета, схема рис. 11). Исходные данные: Р 1500 Н, F 12 10-4 м 2, a 2,5 м, b 3 м, с 1,2 м, d 1,4 м,
Подробнее
Часть 1 Сопротивление материалов
Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Ивановская государственная текстильная академия» (ИГТА) Кафедра теоретической механики
Подробнее
1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ
1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить
Подробнее
Расчет на прочность при кручении
Расчет на прочность при кручении 1. При кручении стержня круглого поперечного сечения напряженное состояние материала во всех точках, за исключением точек на оси стержня, ОТВЕТ: 1) линейное (одноосное
Подробнее
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ КАФЕДРА «СТРОИТЕЛЬНАЯ МЕХАНИКА» СЕКЦИЯ «СОПРОТИВЛЕНИЕ
Подробнее
ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 1
ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 1 Задача 1 Расчет статически определиого стержня ступенчато-постоянного сечения Для статически определиого стержня ступенчато постоянного сечения по схее (рис. 1),
Подробнее
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Министерство образования и науки Украины Донбасская государственная машиностроительная академия СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по подготовке к практическим занятиям (для студентов всех
Подробнее
Простые виды сопротивления прямых брусьев
Приложение Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования Саратовский государственный аграрный университет имени
Подробнее
ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ
ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ОСНОВНЫЕ ПОЛОЖЕНИЯ, МЕТОД СЕЧЕНИЙ, НАПРЯЖЕНИЯ Вариант 1.1 1. Прямой брус нагружается внешней силой F. После снятия нагрузки его форма и размеры полностью восстанавливаются.
Подробнее
Задача 1. Рис.1.1. Решение.
Задача 1 Стержень квадратного поперечного сечения со стороной квадрата равной a и длиной 2l изготовлен из изотропного упругого материала с модулем упругости и коэффициентом Пуассона μ. Стержень вставляется
Подробнее
Экзаменационный билет 3
Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение
Подробнее
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Н. Б. ЛЕВЧЕНКО Л. М. КАГАН-РОЗЕНЦВЕЙГ И. А. КУПРИЯНОВ О. Б. ХАЛЕЦКАЯ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ 1 Санкт-Петербург 001 Министерство образования Российской Федерации Санкт-Петербургский государственный
Подробнее
Внутренние усилия и их эпюры
1. Внутренние усилия и их эпюры Консольная балка длиной нагружена силами F 1 и F. Сечение I I расположено бесконечно близко в заделке. Изгибающий момент в сечении I I равен нулю, если значение силы F 1
Подробнее
КН Вариант 1. Вариант 2.
КН 901-11-1 Вариант 1. Вариант 2. Вариант 3. Вариант 4. Вариант 5. Вариант 6. Вариант 7. Вариант 8. Вариант 9. Вариант 10. Вариант 11. Вариант 12. Вариант 13 Вариант 14 Вариант 15 Вариант 16 Вариант 17
Подробнее
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Череповецкий государственный
Подробнее
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Тульский государственный университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Расчетно-проектировочные
Подробнее
b + a + l + (Рис. 1) (8.2)
Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.
Подробнее
Источник
Тема. Центральное растяжение (сжатие)
Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ? | Задача № 1 Расчет бруса на растяжение (сжатие). Общие сведения Растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только продольная сила. Продольная сила в поперечном сечении бруса численно равна алгебраической сумме внешних сил, расположенных по одну сторону сечения (имеется в виду, что все силы направлены вдоль оси бруса). Растягивающие (направленные от сечения) продольные силы считаются положительными, а сжимающие (направленные к сечению) — отрицательными. При растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению и вычисляемые по формуле где N − продольная сила; F − площадь поперечного сечения. Для наглядного изображения распределения вдоль оси бруса продольных сил и нормальных напряжений строят графики, называемые эпюрами. Деформацией при растяжении участка бруса является его удлинение. Абсолютное удлинение или укорочение прямо пропорционально продольной силе, длине участка бруса и обратно пропорционально жесткости сечения бруса где EF − жесткость сечения. Коэффициент E характеризует жесткость материала, т. е. его способность сопротивляться упругим деформациям растяжения или сжатия и называется модулем упругости первого рода; для стали E = (1,96…2,16)·105Па. 1.2 Пример.Построить эпюры продольных сил, нормальных напряжений и перемещений поперечных сечений по длине ступенчатого бруса (рис. 1). Материал бруса — сталь Ст.3; E = 2 ⋅105МПа; P = 60 кН; F1 = 5 см2; F2= 12 см2; a = 1м. Решение. Разбиваем брус на участки 1(АВ), 2(ВС) и 3(CD). Применяя метод сечений, рассматриваем равновесие левой части, отбрасывая при этом отсеченную правую часть Для участка 1 N1= P= 60кН; Для участка 2 N2= P= 60кН; Для участка 3 N3= P+2P=3P=180кН. Эпюра, показывающая, как меняется N по длине бруса, изображена на рис. 1. Для построения эпюры нормальных напряжений, находим напряжения на каждом участке: Рис.1.1 Эпюру перемещений строим, начиная от защемленного конца D. Перемещение поперечного сечения, где проложена сила 2P (точка С), равное удлинению участка CD. Перемещение сечения В относительно сечения С равно удлинению участка ВС. Абсолютное перемещение сечения В: ΔB = ΔC + ΔBC = 0,75 + 0,25 =1,0мм . Перемещение сечения А относительно В, равное удлинению участка АВ: Абсолютное перемещение сечения А: Δ A = ΔB+ Δ AB = 1,0 + 1,2 = 2,2мм . Построенная по полученным данным эпюра перемещений показана на рис. 1. 1.3 Задание 1. Вариант 1. Построить эпюры продольных сил, нормальных напряжений и перемещений поперечных сечений по длине ступенчатого бруса по данным одной из схем, приведенных на рисунках 1.2. Вариант 1 Исходные данные: P = 50 кН; F = 5 см2; l = 1 м. Рис.1.2 Вариант 2 Для стального бруса, нагруженного продольными силами Р, с учетом собственного веса (рис.1.3) требуется: 1. Определить внутренние силы, напряжения и перемещения по длине бруса. 2. Построить эпюры нормальных сил, напряжений и перемещений по длине бруса. 3. Указать положение наиболее опасного сечения и величину нормального напряжения в этом сечении. Принять, что материал бруса имеет плотность γ = 7,8 г/см3 и модуль продольной упругости Е = 2•105 МПа. Таблица 1.1 — Исходные данные
Рис. 1.3 Литература: 1. Волков А. Н. Сопротивление материалов. — М.: КолосС, 2004. — С.18…19. 2. Кривошапко С. Н. Сопротивление материалов: лекции, семинары, расчетно-графические работы. — М.: Издательство Юрайт, 2013. — С.187…194. ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №3 |
Источник
Растяжение-сжатие.
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии — отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность — свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость — свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость — свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость — свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой — на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник