Сжатие и растяжение графика вдоль оси ох

Растяжение и сжатие графиков функций

Список функций, изученных в 7 и 8 классе

Функция

Формула

График

Раздел справочника

Прямая пропорциональность

y = kx

Прямая

7 кл., §37

Линейная функция

y = kx+b

Прямая

7 кл., §38-39

Обратная пропорциональность

$ y = frac{k}{x} $

Гипербола

8 кл., §6

Квадрат числа

$ y=x^2$

Парабола

8 кл., §18

Квадратный трёхчлен

$ y = ax^2+bc+c$

Парабола

8 кл., §28-29

Квадратный корень

$ y = sqrt{x}$

Парабола

8 кл., §22

Растяжение и сжатие графика по оси OX

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), y_2 = f(px) $$

где $p gt 1$, произвольный положительный множитель.

Пусть p = 2.

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = f(2x) = (2x)^2 = 4x^2 $

$y_2 = y_1 при x_2 = frac{1}{2} x_1$

График сжимается в 2 раза по оси OX

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = f(2x) = frac{4}{(2x)} = frac{2}{x}$

$ y_2 = y_1 при x_2 = frac{1}{2} x_1 $

График сжимается в 2 раза по оси OX

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = f(2x) = sqrt{2x}$

$y_2=y_1 при x_2 = frac{1}{2} x_1$

График сжимается в 2 раза по оси OX

Квадратный корень

Теперь сравним пары функций с делением на p:

$$ y_1 = f(x), quad y_2 = f left( frac{x}{p} right), quad p gt 1 $$

Пусть p = 2

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = f left(frac{x}{2}right) = left(frac{x}{2}right)^2 = frac{x^2}{4} $

$y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = f left(frac{x}{2}right) = frac{4}{x/2} = frac{8}{x}$

$ y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = f left(frac{x}{2}right) = sqrt{frac{x}{2}}$

$y_2=y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Квадратный корень

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = f(px), quad p gt 1 $$

график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = f Biggl(frac{x}{p}Biggr), quad p gt 1 $$

график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Растяжение и сжатие графика по оси OY

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), quad y_2 = Af(x) $$

где $A gt 1$, произвольный положительный множитель.

Пусть A = 2.

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = 2f(x) = 2x^2 $

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = 2f(x) = frac{8}{x}$

$ y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = 2f(x) = 2sqrt{x}$

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Квадратный корень

Теперь сравним пары функций с делением на A:

$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$

Пусть A = 2

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = frac{1}{2}f(x) = frac{x^2}{2}$

$y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = frac{1}{2}f(x) = frac{2}{x}$

$ y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = frac{1}{2}f(x) = frac{sqrt{x}}{2}$

$y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Квадратный корень

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = Af(x), quad A gt 1 $$

график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$

график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Примеры

Пример 1. Постройте в одной координатной плоскости графики функций:

$$ y = sqrt{x}, y = sqrt{3x}, y = sqrt{frac{x}{3}}, y = 3sqrt{x} $$

Сделайте выводы.

Пример 1.

По сравнению с графиком $y = sqrt{x}$:

  • график функции $y = sqrt{3x}$ сжимается в 3 раза по оси OX(←)
  • график функции $y = sqrt{frac{x}{3}}$ растягивается в 3 раза по оси OX(→)
  • график функции $y = 3sqrt{x}$ растягивается в 3 раза по оси OY(↑)

Пример 2*. Постройте в одной координатной плоскости графики функций:

$$ y = f(x), y = f(2x), y = f Biggl(frac{x}{2}Biggr), y = 2f(x) $$

где $f(x) = x^2+3x+2$

Сделайте выводы.

Исходная функция $y = f(x) = x^2+3x+2$

Остальные функции

$$ y = f(2x) = (2x)^2+3 cdot (2x)+2 = 4x^2+6x+2 $$

$$ y = fBiggl(frac{x}{2}Biggr) = Biggl(frac{x}{2}Biggr)^2+3 cdot Biggl(frac{x}{2}Biggr) +2 = frac{x^2}{4}+ frac{3}{2} x+2 $$

$$ y = 2f(x) = 2x^2+6x+4 $$

Получаем:

Пример 2*.

По сравнению с графиком $y = f(x) = x^2+3x+2$:

  • график функции y = f(2x) сжимается в 2 раза по оси OX(→)
  • график функции $y = f left(frac{x}{2}right)$ растягивается в 2 раза по оси OX(←)
  • график функции y = 2f(x) растягивается в 2 раза по оси OY(↑)

Рейтинг пользователей

  • 10

    Алексей

Источник

?

:

,

*-*

+

:

?

!

?

!

>>> mathprofi.com

Сжатие и растяжение графика вдоль оси ох

15% () 5530-hihi5

:

>>>

, ,

, . , . , .

, , , . .

? — , , . , , ? , , . /, , . , , !

? , , . ! , . , , ! , , , , , ..

, , , . , , , .

, : , . , , . , .

, . , .

. . : , . , , :

. , , .

, 🙂

();

;

;

();

;

;

;

;

.

:

() () .

. :

, .

: , , .

, :

1

.

, :

Сжатие и растяжение графика вдоль оси ох

, , .., , . , .

. 2 :

Сжатие и растяжение графика вдоль оси ох

, . , :

2-3 :

, , .

— ! , .

2

׸ 3 :

Сжатие и растяжение графика вдоль оси ох

.

: ( ).

, , .

, .

: , , .

:

3

:

Сжатие и растяжение графика вдоль оси ох

2 :

Сжатие и растяжение графика вдоль оси ох

, . 2 : , .

/ , , :

4

. :

Сжатие и растяжение графика вдоль оси ох

.

:

() ().

, . : , ? , , :

.

: , .

( ). :

5

:

Сжатие и растяжение графика вдоль оси ох

, .

, . : . 2 : . : . .

. , / . , , .

/

, ( ) . :

:

1) , ;

2) , .

6

1 :

Сжатие и растяжение графика вдоль оси ох

, .

, , ( ) 2 .

:

7

( ) 2 :

Сжатие и растяжение графика вдоль оси ох

, . , ( ) ( ). , ( ).

:

8

( ) :

Сжатие и растяжение графика вдоль оси ох

. ! , , , , , . ( ). .

, : , , . ? , , , , // , . , :

:

1) ( ) ( ) 🙁 , ).

2) ( ) (!!!) , .

9

: ( ):

1) 🙁 );

2) (!!!) : ( ):

Сжатие и растяжение графика вдоль оси ох

, . , .

:

10

. : . :

1) 2 : ;

2) : ;

3) (!!!) : :

Сжатие и растяжение графика вдоль оси ох

, , .

, /. . , , .

() .

.

1) , .

: , , .

2) , .

: , , .

, =)

11

.

/:

Сжатие и растяжение графика вдоль оси ох

2 :

Сжатие и растяжение графика вдоль оси ох

, (, ) , 2, : .

2 :

Сжатие и растяжение графика вдоль оси ох

, , : .

, — , , ( 1,3) . . !

, , / :

12

.

: . 2 :

Сжатие и растяжение графика вдоль оси ох

, 2 , ( ).

: . , . :

, .

: , .

13

:

Сжатие и растяжение графика вдоль оси ох

:

14

:

Сжатие и растяжение графика вдоль оси ох

, . . , .

, , : ( ) , . .

/

.

Ƞ , ( ) . :

:

1) , ;

2) , .

15

.

, , :

Сжатие и растяжение графика вдоль оси ох

:

1) () . , .

2) .

16

( ):

1) 1,5 : ( );

2) 2 : :

Сжатие и растяжение графика вдоль оси ох

, :

17

:

1) : ;

2) 4 : :

Сжатие и растяжение графика вдоль оси ох

, , , , , .

:

18

:

1) 2 : ;

2) : ;

3) 1 : :

Сжатие и растяжение графика вдоль оси ох

, 1 . (. 7).

:

, . :

, (. ), ;

, , .

:

19 ( 10)

10 , . .

:

4) : ;

5) 3 : :

Сжатие и растяжение графика вдоль оси ох

, , , :

5 3 .

, .

5 , 1 .

.. , ! , .

, — , , , , , :

20

, .

. . , , , .

, , .

. :

, . :

, . , :

:

:

, :

. :

1) : ( );

2) 2 : ( );

3) : ( ):

Сжатие и растяжение графика вдоль оси ох

:

21

.

. :

(1) 1 . , .

(2) . . .

(3) . , .

(4) .

. ( ):

1) 1 : ( );

2) : ( );

3) : ( ):

Сжатие и растяжение графика вдоль оси ох

, . pdf-, , . , .

, . .

. , , , , .

, , .

: : , .

22

:

Сжатие и растяжение графика вдоль оси ох

, :

Сжатие и растяжение графика вдоль оси ох

:

Сжатие и растяжение графика вдоль оси ох

, , . . , , . ? : , .

: . :

, , (. 13).

23

, :

Сжатие и растяжение графика вдоль оси ох

: , , .

: .. (, ).

, , .

: : , , , .

, 24- , =)

24

, :

Сжатие и растяжение графика вдоль оси ох

, , , , :

Сжатие и растяжение графика вдоль оси ох

:

! !

: , , , .

, , , , : , : . :

25

:

Сжатие и растяжение графика вдоль оси ох

, , , :

Сжатие и растяжение графика вдоль оси ох

, : .

, : , , . , .

? . : . : .

, , . :

26

.

=)

Сжатие и растяжение графика вдоль оси ох

, , :

Сжатие и растяжение графика вдоль оси ох

, ? , .

:

, :

, .

, , . =) — , , . , =)

!

:

>>>

( )

?

! —

Читайте также:  При растяжении можно ходить в школу

Источник

Преобразования графиков тригонометрических функций

Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.

п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX

Общие принципы растяжения и сжатия графиков по оси OX:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.

Тригонометрические функции являются периодическими: синус и косинус с периодом 2π, тангенс и котангенс — с периодом π. Получаем следствие общих принципов:

При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ период второй функции уменьшается в p раз: $$ T_2=frac{T_1}{p} $$

При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$

Например:

Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sin2x, h(x)=sinfrac{x}{2} $$ Растяжение и сжатие графиков тригонометрических функций по оси OX

Период колебаний функции (g(x)=sin2x) в 2 раза меньше: (T_g=frac{2pi}{2}=pi).

Период колебаний функции (h(x)=sinfrac{x}{2}) в 2 раза больше: (T_h=2cdot 2pi=4pi).

п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY

Общие принципы растяжения и сжатия графиков по оси OY:

При сравнении графиков двух функций $$ y_1=f(x), y_2=Af(x), Agt 1 $$ график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.

Общий принцип сжатия графиков:

При сравнении графиков двух функций $$ y_1=f(x), y_2=frac{1}{A}f(x), Agt 1 $$ график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.

Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:

  • умножение на параметр (Agt 1) увеличивает амплитуду колебаний в (A) раз;
  • деление на параметр (Agt 1) уменьшает амплитуду колебаний в (A) раз.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=cosx, g(x)=2cosx, h(x)=frac{1}{2}cosx $$ Растяжение и сжатие графиков тригонометрических функций по оси OY

Умножение на (A=2) увеличивает амплитуду колебаний в 2 раза.

Область значений функции (g(x)=2cosx: yin[-2;2]). График растягивается по оси OY.

Деление на (A=2) уменьшает амплитуду колебаний в 2 раза. Область значений функции (h(x)=frac12 cosx: yinleft[-frac12; frac12right]). График сжимается по оси OY.

2) Теперь построим $$ f(x)=tgx, g(x)=2tgx, h(x)=frac{1}{2}tgx $$ Растяжение и сжатие графиков тригонометрических функций по оси OY

В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на (A=2) служит поведение функции при (x=fracpi4). $$ fleft(fracpi4right)=tgleft(fracpi4right)=1, gleft(fracpi4right)=2tgleft(fracpi4right)=2, hleft(fracpi4right)=frac12 tgleft(fracpi4right)=frac12 $$ Аналогично — для любого другого значения аргумента x.

п.3. Параллельный перенос графиков тригонометрических функций по оси OX

Общие принципы переноса по оси OX:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x+a), agt 0 $$ график второй функции смещается влево на a по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x-a), agt 0 $$ график второй функции смещается вправо на a по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.

При этом параметр x называют начальной фазой колебаний.

При сравнении двух тригонометрических функций (y_1=f(x)) и (y_2=f(xpm a)) говорят, что у второй функции сдвиг по фазе равен (pm a).

Например:

1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinleft(x+fracpi4right), h(x)=sinleft(x-fracpi4right) $$ Параллельный перенос графиков тригонометрических функций по оси OX

Функция (g(x)=sinleft(x+fracpi4right)) сдвинута на (fracpi4) влево по сравнению с (f(x))

Функция (h(x)=sinleft(x-fracpi4right)) сдвинута на (fracpi4) вправо по сравнению с (f(x))

п.4. Параллельный перенос графиков тригонометрических функций по оси OY

Общие принципы переноса по оси OY:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)+a, agt 0 $$ график второй функции смещается вверх на a по оси OY по сравнению с графиком первой функции.

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)-a, agt 0 $$ график второй функции смещается вниз на a по оси OY по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinx+1, h(x)=sinx-1 $$ Параллельный перенос графиков тригонометрических функций по оси OY

Функция (g(x)=sinx+1) сдвинута на 1 вверх по сравнению c (f(x))

Функция (h(x)=sinx-1) сдвинута на 1 вниз по сравнению с (f(x))

п.5. Общее уравнение синусоиды

Синусоида — плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Asin(cx+d)+B $$ где

A — амплитуда, характеризует растяжение графика по оси OY

B — вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)

c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX

d- начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)

График (y(x)=Acos(cx+d)+B) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.

Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.

Например:

Построим график (g(x)=3sinleft(2x+fracpi2right)-1)

По сравнению с (f(x)=sinx):

  • (A=3) — график растянут по оси OY в 3 раза
  • (c=2) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
  • (d=fracpi2) — начальная фаза положительная, график сдвинут на (frac{pi}{2cdot 2}=fracpi4) влево
  • (B=-1) — график сдвинут по оси OY на 1 вниз

Пример построения синусоиды

п.6. Общее уравнение тангенцоиды

Tангенцоидa — плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Atg(cx+d)+B $$ где

A — амплитуда, характеризует растяжение графика по оси OY

B — вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)

c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX

d- начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)

График (y(x)=Actg(cx+d)+B) также называют тангенцоидой.

Например:

Построим график (g(x)=frac12 tgleft(frac{x}{2}-fracpi3right)+1)

По сравнению с (f(x)=tgx):

  • (A=frac12) — график сжат по оси OY в 2 раза
  • (c=frac12) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
  • (d=-fracpi3) — начальная фаза отрицательная, график сдвинут на (frac{pi}{3cdot 1/2}=frac{2pi}{4}) вправо
  • (B=1) — график сдвинут по оси OY на 1 вверх

Пример построения тангенцоиды

п.7. Примеры

Пример 1.Постройте в одной системе координат графики: $$ f(x)=sinx, g(x)=-sinx, h(x)=cosx $$ Найдите сдвиг по фазе для (g(x)) и (h(x)) в сравнении с (f(x)).

Читайте также:  Значение прочности на растяжение

Пример 1

Сдвиг по фазе удобно определять по главной арке синусоиды.

Для (f(x)=sin⁡x) главная арка определена на отрезке (0leq xleq pi)

Для (g(x)=-sin⁡x) главная арка определена на отрезке (-pileq xleq 0), т.е. сдвинута на π влево от (f(x)). Это означает, что: $$ f(x)=g(x+pi), sin⁡x=-sin⁡(x+pi) $$ Для (h(x)=cos⁡x) главная арка определена на отрезке (-fracpi2leq xleq fracpi2), т.е. сдвинута на (fracpi2) влево от (f(x)). Это означает, что: $$ f(x)=hleft(x+fracpi2right), sinx=cosleft(x+fracpi2right) $$

Пример 2. Найдите наименьшие положительные периоды функций:

a) (y=sin5x)

Период синуса (2pi) уменьшается в 5 раз. Получаем: (T=frac{2pi}{5})

б) (y=cospi x)

Период косинуса (2pi) уменьшается в (pi) раз. Получаем: (T=frac{2pi}{pi}=2)

в) (y=tgfrac{x}{4})

Период тангенса (pi) увеличивается в 4 раза. Получаем: (T=4pi)

г) (y=tgleft(2x+frac{pi}{3}right))

Период тангенса (pi) уменьшается в 2 раза. Получаем: (T=fracpi2)

Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctgleft(3x+fracpi6right) $$ По сравнению с (g(x)=tg⁡x):

  • (A=2) — график растянут по оси OY в 2 раза
  • (c=3) — период меньше в 3 раза (T=fracpi3), расстояние между асимптотами (fracpi3), график сжат в 3 раза по оси OX
  • (d=-fracpi6) — начальная фаза положительная, график сдвинут на (frac{pi}{6cdot 3}=frac{pi}{18}) влево

Расположение нулей: $$ tgleft(3x+fracpi6right)=0Rightarrow 3x+fracpi6=pi kRightarrow 3x=-fracpi6+pi kRightarrow x =-frac{pi}{18}+frac{pi k}{3} $$ Вертикального сдвига нет, нули расположены на оси OX.

Расположение асимптот: $$ 3x+fracpi6nefracpi2+pi kRightarrow 3xnefracpi3+pi kRightarrow xnefracpi9+frac{pi k}{3} $$ Пересечение главной ветви с осью OY: (x=0, y=2tgfracpi6=frac{2}{sqrt{3}})

С учетом периода (fracpi3) получаем семейство дополнительных точек для построения графика (left(frac{pi k}{3}; frac{2}{sqrt{3}}right)).

Пример 3

Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) (sinx=sin2x) при (0leq xleq 3pi)

Пример 4a

Ответ: 7 корней

б) (cosfrac{x}{2}=cos2x) при (-2pileq xleq 2pi)

Пример 4б

Ответ: 7 корней

Источник

Растяжение и сжатие графиков. Параллельный перенос графиков функций

ЦЕЛИ: 1) рассмотреть графики функций y=f(x), y=kf(x), y=f(x)+n, y=f(x-m) и y=f(x-m)+n и их свойства, используя ПК и программу Advanced Grapher;

2)расширить представления о преобразованиях графиков более сложных функций;

3)способствовать развитию у учащихся навыков чтения графиков и построения графиков функций.

I. Новый материал — объяснительная лекция.

Графики функций широко используются в различных областях инженерных знаний, поэтому умение строить, «читать», прогнозировать их «поведение» имеют огромную роль в практической деятельности инженерных работников, гидро, метеорологов и людей других «математических» специальностей.

Выясним, какая связь существует между графиками функций y = f(x) и y = kf(x), где k-число, не равное нулю.

Пусть графиком функции y = f(x), область определения которой- промежуток[-2;4],является кривая, изображённая на рис.1а f(x) = x(x-3)(x+1).

Рассмотрим сначала случай, когда k>1.Построим график функции y = kf(x), где k=2. Для этого расстояние каждой точки графика функций y = f(x) от оси X увеличим в 2раза, т.е.умножим её ординату на 2. Построение выполним с помощью программы Advanced Grapher, набрав формулу функции F1 с клавиатуры. Заметим, что точки с абсциссами 0; 3; -1, принадлежащие оси Х, останутся на месте, т.к.их ординаты равны нулю (0*2х = 0).Все остальные точки графиков у1, и у, имеющие одинаковые абсциссы, будут лежать соответственно на перпендикулярах к оси Х, причём каждая точка графика функции у= 2f(x) будет находиться от оси Х на расстоянии в 2 раза большем, чем соответственная точка графика функции y = f(x). (рис. 1б).

Рассмотрим теперь случай, когда О < k < 1, например k =, и построим график функции y= kf (x), при k = , используя программу Advanced Grapher.

Опять же заметим, что точки с абсциссами -1; 0 и 3, принадлежащие оси Х, останутся на месте ( 0* = 0 ), а каждая точка графика функции y= f (x), будет находиться от оси Х на расстоянии в 2 раза меньшем, чем соответственная точка графика функции y = f(x) (рис.1в).

Делаем вывод о том, что график функции y = f(x) при k < 1 можно получить из графика функции y = f(x) растяжением от оси Х исходного графика в k раз, а при О < k < 1- сжатием к оси Х графика функции y = f(x) в раз.

И рассмотрим случай, когда k< 0. Ограничимся значением k = -1, т.е. выясним, как можно построить график функции y= -f(x), зная график функции y = f(x).

Задав с клавиатуры формулу графика y = -f(x) и получив соответствующее изображение на экране (рис. 1г), заметим, что каждой точке графика y, кроме точек с абсциссами -1; 0 и 3, соответствует точка графика y = f(x) с противоположной ординатой.

Соответственно делаем вывод, что график функции y = -f(x) можно получить с помощью симметрии относительно оси Х.

Аналогично, графики функций y = kf(x) и y = -kf(x) при любом k0 симметричны относительно оси Х.

Иначе говоря, чтобы построить график функции y = kf(x), где k < 0, можно сначала построить график функции y = -kf(x), где -k > 0, а затем отобразить его симметрично относительно оси Х.

Выясним, как связаны между собой графики функций y = f(x) и y = f(x)+n, где n -произвольное число.

Рассмотрим графики функций y = x, y = x — 4 , y= x-4, y = x+ , y= x- (рис. 2).

Рассматривать будем попарно графики функций у и у(рис.2а), у и y(рис.2б), у и y(рис.2в), у и y(рис.2г).

Моментальное построение графика каждой из выше указанных функций даст возможность сделать вывод, что график функции y = f(x) + n можно получить из графика функции y = f(x) с помощью сдвига вдоль оси Y на n единиц вверх, если n>0, или на единиц вниз, если n<0.

Выясним теперь, как связаны между собой графики функций y = f(x) и y = f(x-m), где m — произвольное число.

Рассмотрим графики функций y = (x-3), y = (x+2), y = (x), y = (x+).

Получаем рис.3 и делаем вывод, что график функции y = f(x) можно получить с помощью сдвига вдоль оси Х на m единиц вправо, если m>0, или на единиц влево, если m<0.

Из курса алгебры VII класса известно, что график функции y = x (парабола) симметричен относительно ось У. Точку пересечения параболы с осью симметрии называют вершиной параболы.

Построим, используя программу Advanced Grapher, в одной системе координат графики функций y = x, у== x+2, y= (х-3) и y= (х-3) +2 ( рис.4).

Учащимся наглядно видно, что у параболы у== x+2 осью симметрии является ось У, а у параболы y= (х-3) — прямая х = 3. Графиком же функции y= (х-3) +2 является парабола с вершиной в точке (3;2) и осью симметрии её является прямая х = 3.

Из наглядного наблюдения учащиеся видят, что при построении графика функции у = (х-3) +2 нужно последовательно выполнить два параллельных переноса: один в направлении оси У на 2 единицы вверх, а другой в направлении оси Х на 3 единицы вправо.

Читайте также:  Что делать при растяжении квадрицепса

Делаем вывод, что графиком функции вида у = (х-m) +n является парабола с вершиной в точке А(m;n) .А также обобщаем выше рассмотренные преобразования графиков и делаем вывод, что график функции y = f(x-m)+n может быть получен из графика функции y=f(x) в результате последовательно выполненных двух параллельных переносов: сдвига вдоль оси Х на m единиц и сдвига графика функции у = (х-m) вдоль оси У на n единиц.

II. Закрепление

.

У: Изобразите на координатной плоскости заданные точки и определите, используя обороты «выше на…» и «ниже…», взаимное расположение соответствующих точек:

а) А(-1;7) и А1(-1;10) б) В(2;7) и В1(2;5) в) С (0;-6) и С1(0;-5) г) Д (3;-4) и Д1(3;-7) .

У: Как найти расстояние между точками, имеющими одинаковые ординаты? Закончите предложение: «Если точки имеют одинаковые ординаты, то расстояние между ними равно…»

Обучающая исследовательская работа.

(карточки-распечатки см. Приложение 1)

I вариант.

1. Заданы функции y = f(x) и y = f(x) + 2. заполните таблицу значений этих функций и сделайте вывод о взаимном расположении точек данных функций и их графиков:

X

1

2

4

6

7

y=f(x)

5

7

-5

y=f(x)+2

3

-11

Д: Любая точка графика y = f(x)+2 с абсциссой X находится на 2 единицы «выше», чем точка графика y = f(x) с той же самой абсциссой; а график функции y = f(x)+2 можно получить из графика y = f(x) параллельным переносом вдоль оси ординат на 2 единицы «вверх».

II вариант.

1. Заданы функции y = f(x) и y = f(x) — 3. заполните таблицу значений этих функций и сделайте вывод о взаимном расположении точек данных функций и их графиков:

X

1

3

5

9

y=f(x)

4

-6

5

y=f(x)-3

-3

Д: Любая точка графика y = f(x)-3 с абсциссой X находится на 3 единицы «ниже», чем точка графика y = f(x) с той же самой абсциссой; а график функции y=f(x)-3 можно получить из графика y = f(x) параллельным переносом вдоль оси ординат на 3 единицы «вниз».

У: С помощью какого преобразования можно получить график функции y = f(x)+a, а0 из графика функции y = f(x).

Д: Обобщённый вывод (записать в тетрадь): График функции y1= f(x)+a, а0 можно получить из графика функции y = f(x) параллельным переносом вдоль оси ординат на единиц «вниз», если а<0, и на единиц «вверх», если а>0.

У: Пусть даны графики функций y = f(x) и y = f(x)+7. Известно, что один из них проходит через начало координат. Определите точку пересечения другого графика с осью ординат.

Д: A (0;7) или А (0;-7).

У: Пусть даны графики функций y = f(x) и y = f(x)+c. Известно, что один из них проходит через точку А(-11;231) и другой через точку А (-11;132). Найдите все возможные значения С.

Д: 99 или -99.

I вариант.

2. Постройте графики функций, используя известный график y = kx:

a) y = x-4 ; б) у = x+1; в) у = 2 x-1.

3.

II вариант.

2. Постройте графики функций, используя известный график y = kx:

а) у = -x+3; б) у = -0,5x+2; в) у = -2x-3.

3.

У: Изобразите на координатной плоскости заданные точки и определите, используя обороты «левее на …» и «правее на …» взаимное расположение следующих точек:

а) А (-1;7) и А (6;7) б) С (8;-6) и С (14;-6) в) В (2;3) и В (-2;3) г) Д (-13;_4) и Д (-3;-4).

У: Как найти расстояние между точками, имеющими одинаковые абсциссы? Закончите предложение: «Если точки имеют одинаковые абсциссы, то расстояние между ними равно…»

I, II вариант.

4. Заданы функции y=f(x), y= f(x+2) и y= f(x-3). Заполните таблицу значений этих функций:

У: Как взаимно расположены точки графиков функций y = f(x) и y = f(x+2)?

Каким образом можно получить график функции y= f(x+2) из графика функции y = f(x)?

Д: Любая точка графика y= f(x+2) с абсциссой х-2 находится на 2 единицы «левее», чем точка графика y=f(x) с абсциссой х, а график функции y= f(x+2) можно получить из графика y = f(x), «сдвинув» его на 2 единицы влево вдоль оси абсцисс.

У: Как взаимно расположены точки графиков функций y = f(x) и y= f(x-3)?

Каким образом можно получить график функции y= f(x-3) из графика функции y = f(x)?

Д: Любая точка графика y= f(x-3) с абсциссой х+3 находится на 3 единицы «правее», чем точка графика y = f(x) с абсциссой х, а график функции y= f(x-3) можно получить из графика функции y = f(x) «сдвинув» его на 3 единицы вправо вдоль оси абсцисс.

У: Попытайтесь сделать вывод о том как можно получить график функции y= f(x+а) из графика функции y = f(x)?

Д: График функции y= f(x+а) можно получить из графика функции y = f(x), «сдвинув» его на единиц вправо вдоль оси абсцисс, если а<0, и на единиц влево вдоль оси абсцисс, если а>0.

У: Пусть даны графики функций y = f(x) и y= f(x+7). Известно, что один из них проходит через начало координат. Какую точку пересечения графика с осью абсцисс можно указать наверняка?

Д: А(-7;0) и А (7;0).

У: Опишите как расположены относительно друг друга графики функций (задания 5-9 выполнены на карточках-распечатках, ответы в устной форме):

5. y = f(x-2) и y = f(x+7).

6. y = f(2x) и y = f(2x-4).

7. y = f(2x) и y = f(2x+1).

8. y = f(0,5x) и y = f(0,5x-4).

9. y = f() и . y = f(-1).

III . Лабораторно-исследовательская работа.

(все задания выполнены на карточках-распечатках, ответы см. в приложении 2)

I вариант.

10. Постройте графики функций, используя программу Advanced Grapher :

а) у = (x-4). б) у = (x+2).

11. Пусть дан график функции y=f(x). Как получить график функции y = f(x+3)-4?

12. Постройте графики функций, используя программу Advanced Grapher:

а) у = -4; б) у = (x+3)-4.

II вариант.

10. Постройте графики функций, используя программу Advanced Grapher :

а) у = 2(x-1), б) у = -(x+3).

11. Пусть дан график функции y=f(x). Как получить график функции y = f(x-5)+2?

12. Постройте графики функций, используя программу Advanced Grapher:

а) у =+2; б) у =(x-5)+2.

III вариант.

10. Постройте графики функций, используя программу Advanced Grapher :

а) у = -0,5(x-4); б) у = (2x-3).

11. Пусть дан график функции y = f(x). Как получить график функции y = f(x+1)+3?

12. Постройте графики функций, используя программу Advanced Grapher:

а) у =+3; б) у = (x+1)+3.

IV вариант.

10. Постройте графики функций, используя программу Advanced Grapher :

а) у = 4x+4х+1; б) у = —х-1.

11. Пусть дан график функции y=f(x). Как получить график функции y = f(x-2)-1?

12. Постройте графики функций, используя программу Advanced Grapher:

а) у =-1; б) у = (x-2)-1.

Источник