Задачи на сжатие и растяжение графиков
Содержание статьи
Растяжение и сжатие графиков функций
Список функций, изученных в 7 и 8 классе
Функция | Формула | График | Раздел справочника |
Прямая пропорциональность | y = kx | Прямая | 7 кл., §37 |
Линейная функция | y = kx+b | Прямая | 7 кл., §38-39 |
Обратная пропорциональность | $ y = frac{k}{x} $ | Гипербола | 8 кл., §6 |
Квадрат числа | $ y=x^2$ | Парабола | 8 кл., §18 |
Квадратный трёхчлен | $ y = ax^2+bc+c$ | Парабола | 8 кл., §28-29 |
Квадратный корень | $ y = sqrt{x}$ | Парабола | 8 кл., §22 |
Растяжение и сжатие графика по оси OX
Сравним графики пар функций, которые в общем виде можно записать так:
$$ y_1 = f(x), y_2 = f(px) $$
где $p gt 1$, произвольный положительный множитель.
Пусть p = 2.
Парабола: $y_1 = f(x) = x^2$ $ y_2 = f(2x) = (2x)^2 = 4x^2 $ $y_2 = y_1 при x_2 = frac{1}{2} x_1$ График сжимается в 2 раза по оси OX | ![]() |
Гипербола: $ y_1 = f(x) = frac{4}{x}$ $y_2 = f(2x) = frac{4}{(2x)} = frac{2}{x}$ $ y_2 = y_1 при x_2 = frac{1}{2} x_1 $ График сжимается в 2 раза по оси OX | |
Квадратный корень: $y_1 = f(x) = sqrt{x}$ $y_2 = f(2x) = sqrt{2x}$ $y_2=y_1 при x_2 = frac{1}{2} x_1$ График сжимается в 2 раза по оси OX |
Теперь сравним пары функций с делением на p:
$$ y_1 = f(x), quad y_2 = f left( frac{x}{p} right), quad p gt 1 $$
Пусть p = 2
Парабола: $y_1 = f(x) = x^2$ $ y_2 = f left(frac{x}{2}right) = left(frac{x}{2}right)^2 = frac{x^2}{4} $ $y_2 = y_1 при x_2 = 2x_1$ График растягивается в 2 раза по оси OX | ![]() |
Гипербола: $ y_1 = f(x) = frac{4}{x}$ $y_2 = f left(frac{x}{2}right) = frac{4}{x/2} = frac{8}{x}$ $ y_2 = y_1 при x_2 = 2x_1$ График растягивается в 2 раза по оси OX | |
Квадратный корень: $y_1 = f(x) = sqrt{x}$ $y_2 = f left(frac{x}{2}right) = sqrt{frac{x}{2}}$ $y_2=y_1 при x_2 = 2x_1$ График растягивается в 2 раза по оси OX |
При сравнении графиков двух функций
$$ y_1 = f(x), quad y_2 = f(px), quad p gt 1 $$
график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.
При сравнении графиков двух функций
$$ y_1 = f(x), quad y_2 = f Biggl(frac{x}{p}Biggr), quad p gt 1 $$
график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.
Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)
Растяжение и сжатие графика по оси OY
Сравним графики пар функций, которые в общем виде можно записать так:
$$ y_1 = f(x), quad y_2 = Af(x) $$
где $A gt 1$, произвольный положительный множитель.
Пусть A = 2.
Парабола: $y_1 = f(x) = x^2$ $ y_2 = 2f(x) = 2x^2 $ $y_2 = 2y_1 при x_2 = x_1$ График растягивается в 2 раза по оси OY | ![]() |
Гипербола: $ y_1 = f(x) = frac{4}{x}$ $y_2 = 2f(x) = frac{8}{x}$ $ y_2 = 2y_1 при x_2 = x_1$ График растягивается в 2 раза по оси OY | |
Квадратный корень: $y_1 = f(x) = sqrt{x}$ $y_2 = 2f(x) = 2sqrt{x}$ $y_2 = 2y_1 при x_2 = x_1$ График растягивается в 2 раза по оси OY |
Теперь сравним пары функций с делением на A:
$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$
Пусть A = 2
Парабола: $y_1 = f(x) = x^2$ $ y_2 = frac{1}{2}f(x) = frac{x^2}{2}$ $y_2 = frac{1}{2}y_1 при x_2 = x_1$ График сжимается в 2 раза по оси OY | ![]() |
Гипербола: $ y_1 = f(x) = frac{4}{x}$ $y_2 = frac{1}{2}f(x) = frac{2}{x}$ $ y_2 = frac{1}{2}y_1 при x_2 = x_1$ График сжимается в 2 раза по оси OY | |
Квадратный корень: $y_1 = f(x) = sqrt{x}$ $y_2 = frac{1}{2}f(x) = frac{sqrt{x}}{2}$ $y_2 = frac{1}{2}y_1 при x_2 = x_1$ График сжимается в 2 раза по оси OY |
При сравнении графиков двух функций
$$ y_1 = f(x), quad y_2 = Af(x), quad A gt 1 $$
график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.
При сравнении графиков двух функций
$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$
график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.
Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)
Примеры
Пример 1. Постройте в одной координатной плоскости графики функций:
$$ y = sqrt{x}, y = sqrt{3x}, y = sqrt{frac{x}{3}}, y = 3sqrt{x} $$
Сделайте выводы.
По сравнению с графиком $y = sqrt{x}$:
- график функции $y = sqrt{3x}$ сжимается в 3 раза по оси OX(←)
- график функции $y = sqrt{frac{x}{3}}$ растягивается в 3 раза по оси OX(→)
- график функции $y = 3sqrt{x}$ растягивается в 3 раза по оси OY(↑)
Пример 2*. Постройте в одной координатной плоскости графики функций:
$$ y = f(x), y = f(2x), y = f Biggl(frac{x}{2}Biggr), y = 2f(x) $$
где $f(x) = x^2+3x+2$
Сделайте выводы.
Исходная функция $y = f(x) = x^2+3x+2$
Остальные функции
$$ y = f(2x) = (2x)^2+3 cdot (2x)+2 = 4x^2+6x+2 $$
$$ y = fBiggl(frac{x}{2}Biggr) = Biggl(frac{x}{2}Biggr)^2+3 cdot Biggl(frac{x}{2}Biggr) +2 = frac{x^2}{4}+ frac{3}{2} x+2 $$
$$ y = 2f(x) = 2x^2+6x+4 $$
Получаем:
По сравнению с графиком $y = f(x) = x^2+3x+2$:
- график функции y = f(2x) сжимается в 2 раза по оси OX(→)
- график функции $y = f left(frac{x}{2}right)$ растягивается в 2 раза по оси OX(←)
- график функции y = 2f(x) растягивается в 2 раза по оси OY(↑)
Рейтинг пользователей
40
Андрей Наджаров
30
Best
20
Алексей
20
Vladik29
12
Источник
Преобразование графиков функций
Анна Малкова
В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.
Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.
Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.
Начнем со сдвигов графиков по Х и по Y.
Сдвиг по горизонтали.
Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.
1. Сдвиг по вертикали.
Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.
Теперь растяжение графика. Или сжатие.
2. Растяжение (сжатие) по горизонтали.
Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если
3. Растяжение (сжатие) по вертикали
Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если
И отражение по горизонтали.
4. Отражение по горизонтали
График функции симметричен графику функции относительно оси Y.
5. Отражение по вертикали.
График функции симметричен графику функции относительно оси Х.
Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.
И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.
6. Графики функций и
На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.
Построим график функции
Конечно же, мы пользуемся определением модуля.
Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.
Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.
Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.
Вот самые простые задачи на преобразование графиков.
1. Построим график функции
Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.
Вершина в точке
2. Построим график функции
Выделим полный квадрат в формуле.
График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.
Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка
Продолжение — в статье «Построение графиков функций».
Источник
Преобразования графиков тригонометрических функций
Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.
п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX
Общие принципы растяжения и сжатия графиков по оси OX:
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом 2π, тангенс и котангенс — с периодом π. Получаем следствие общих принципов:
При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ период второй функции уменьшается в p раз: $$ T_2=frac{T_1}{p} $$
При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$
Например:
Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sin2x, h(x)=sinfrac{x}{2} $$
Период колебаний функции (g(x)=sin2x) в 2 раза меньше: (T_g=frac{2pi}{2}=pi).
Период колебаний функции (h(x)=sinfrac{x}{2}) в 2 раза больше: (T_h=2cdot 2pi=4pi).
п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY
Общие принципы растяжения и сжатия графиков по оси OY:
При сравнении графиков двух функций $$ y_1=f(x), y_2=Af(x), Agt 1 $$ график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.
Общий принцип сжатия графиков:
При сравнении графиков двух функций $$ y_1=f(x), y_2=frac{1}{A}f(x), Agt 1 $$ график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:
- умножение на параметр (Agt 1) увеличивает амплитуду колебаний в (A) раз;
- деление на параметр (Agt 1) уменьшает амплитуду колебаний в (A) раз.
Например:
1) Построим в одной системе координат три графика: $$ f(x)=cosx, g(x)=2cosx, h(x)=frac{1}{2}cosx $$
Умножение на (A=2) увеличивает амплитуду колебаний в 2 раза.
Область значений функции (g(x)=2cosx: yin[-2;2]). График растягивается по оси OY.
Деление на (A=2) уменьшает амплитуду колебаний в 2 раза. Область значений функции (h(x)=frac12 cosx: yinleft[-frac12; frac12right]). График сжимается по оси OY.
2) Теперь построим $$ f(x)=tgx, g(x)=2tgx, h(x)=frac{1}{2}tgx $$
В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на (A=2) служит поведение функции при (x=fracpi4). $$ fleft(fracpi4right)=tgleft(fracpi4right)=1, gleft(fracpi4right)=2tgleft(fracpi4right)=2, hleft(fracpi4right)=frac12 tgleft(fracpi4right)=frac12 $$ Аналогично — для любого другого значения аргумента x.
п.3. Параллельный перенос графиков тригонометрических функций по оси OX
Общие принципы переноса по оси OX:
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x+a), agt 0 $$ график второй функции смещается влево на a по оси OX по сравнению с графиком первой функции.
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x-a), agt 0 $$ график второй функции смещается вправо на a по оси OX по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций (y_1=f(x)) и (y_2=f(xpm a)) говорят, что у второй функции сдвиг по фазе равен (pm a).
Например:
1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinleft(x+fracpi4right), h(x)=sinleft(x-fracpi4right) $$
Функция (g(x)=sinleft(x+fracpi4right)) сдвинута на (fracpi4) влево по сравнению с (f(x))
Функция (h(x)=sinleft(x-fracpi4right)) сдвинута на (fracpi4) вправо по сравнению с (f(x))
п.4. Параллельный перенос графиков тригонометрических функций по оси OY
Общие принципы переноса по оси OY:
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)+a, agt 0 $$ график второй функции смещается вверх на a по оси OY по сравнению с графиком первой функции.
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)-a, agt 0 $$ график второй функции смещается вниз на a по оси OY по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
Например:
1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinx+1, h(x)=sinx-1 $$
Функция (g(x)=sinx+1) сдвинута на 1 вверх по сравнению c (f(x))
Функция (h(x)=sinx-1) сдвинута на 1 вниз по сравнению с (f(x))
п.5. Общее уравнение синусоиды
Синусоида — плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Asin(cx+d)+B $$ где
A — амплитуда, характеризует растяжение графика по оси OY
B — вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)
c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX
d- начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)
График (y(x)=Acos(cx+d)+B) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.
Например:
Построим график (g(x)=3sinleft(2x+fracpi2right)-1)
По сравнению с (f(x)=sinx):
- (A=3) — график растянут по оси OY в 3 раза
- (c=2) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
- (d=fracpi2) — начальная фаза положительная, график сдвинут на (frac{pi}{2cdot 2}=fracpi4) влево
- (B=-1) — график сдвинут по оси OY на 1 вниз
п.6. Общее уравнение тангенцоиды
Tангенцоидa — плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Atg(cx+d)+B $$ где
A — амплитуда, характеризует растяжение графика по оси OY
B — вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)
c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX
d- начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)
График (y(x)=Actg(cx+d)+B) также называют тангенцоидой.
Например:
Построим график (g(x)=frac12 tgleft(frac{x}{2}-fracpi3right)+1)
По сравнению с (f(x)=tgx):
- (A=frac12) — график сжат по оси OY в 2 раза
- (c=frac12) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
- (d=-fracpi3) — начальная фаза отрицательная, график сдвинут на (frac{pi}{3cdot 1/2}=frac{2pi}{4}) вправо
- (B=1) — график сдвинут по оси OY на 1 вверх
п.7. Примеры
Пример 1.Постройте в одной системе координат графики: $$ f(x)=sinx, g(x)=-sinx, h(x)=cosx $$ Найдите сдвиг по фазе для (g(x)) и (h(x)) в сравнении с (f(x)).
Сдвиг по фазе удобно определять по главной арке синусоиды.
Для (f(x)=sinx) главная арка определена на отрезке (0leq xleq pi)
Для (g(x)=-sinx) главная арка определена на отрезке (-pileq xleq 0), т.е. сдвинута на π влево от (f(x)). Это означает, что: $$ f(x)=g(x+pi), sinx=-sin(x+pi) $$ Для (h(x)=cosx) главная арка определена на отрезке (-fracpi2leq xleq fracpi2), т.е. сдвинута на (fracpi2) влево от (f(x)). Это означает, что: $$ f(x)=hleft(x+fracpi2right), sinx=cosleft(x+fracpi2right) $$
Пример 2. Найдите наименьшие положительные периоды функций:
a) (y=sin5x)
Период синуса (2pi) уменьшается в 5 раз. Получаем: (T=frac{2pi}{5})
б) (y=cospi x)
Период косинуса (2pi) уменьшается в (pi) раз. Получаем: (T=frac{2pi}{pi}=2)
в) (y=tgfrac{x}{4})
Период тангенса (pi) увеличивается в 4 раза. Получаем: (T=4pi)
г) (y=tgleft(2x+frac{pi}{3}right))
Период тангенса (pi) уменьшается в 2 раза. Получаем: (T=fracpi2)
Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctgleft(3x+fracpi6right) $$ По сравнению с (g(x)=tgx):
- (A=2) — график растянут по оси OY в 2 раза
- (c=3) — период меньше в 3 раза (T=fracpi3), расстояние между асимптотами (fracpi3), график сжат в 3 раза по оси OX
- (d=-fracpi6) — начальная фаза положительная, график сдвинут на (frac{pi}{6cdot 3}=frac{pi}{18}) влево
Расположение нулей: $$ tgleft(3x+fracpi6right)=0Rightarrow 3x+fracpi6=pi kRightarrow 3x=-fracpi6+pi kRightarrow x =-frac{pi}{18}+frac{pi k}{3} $$ Вертикального сдвига нет, нули расположены на оси OX.
Расположение асимптот: $$ 3x+fracpi6nefracpi2+pi kRightarrow 3xnefracpi3+pi kRightarrow xnefracpi9+frac{pi k}{3} $$ Пересечение главной ветви с осью OY: (x=0, y=2tgfracpi6=frac{2}{sqrt{3}})
С учетом периода (fracpi3) получаем семейство дополнительных точек для построения графика (left(frac{pi k}{3}; frac{2}{sqrt{3}}right)).
Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) (sinx=sin2x) при (0leq xleq 3pi)
Ответ: 7 корней
б) (cosfrac{x}{2}=cos2x) при (-2pileq xleq 2pi)
Ответ: 7 корней
Источник
Курсовая работа » Преобразование графиков функций»
Челябинский государственный педагогический университет
Курсовая работа
на тему : « Преобразование графиков функций»
студентки заочного отделения
физико-математ. факультета
гр.213 Газизовой Ю.Н.
2015г.
Содержание
Введение
Глава 1. Теоретические основы преобразований графиков функций
1.1. Параллельный перенос
1.2. Растяжение и сжатие
1.3.Преобразование графика с модулем
1.3.1 Построение графика функции y= |f(x)|
1.3.2 Построение графика функции y= f(|x|)
1.4. Построение графика обратной функции
1.5. Общий вид функций
1.6. Построение графика функций с помощью преобразований
Глава2. Примеры преобразований графиков функций
2.1. Преобразование аргумента
2.2. Построим график функции y=a x2 +bx+c
2.3.Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)
Заключение
Литература
Введение
Тема курсовой работы «Преобразование графиков функций».
График функции — это геометрическая интерпретация функции на чертеже. Функция — это одно из основных математических и общенаучных понятий, выражающее зависимость между переменными величинами. Каждая область знаний: физика, химия, экономика, биология, социология и др. — имеет свои объекты изучения, устанавливает свойства и взаимосвязи этих объектов. В различных науках и областях человеческой деятельности возникают количественные соотношения, и алгебра изучает их в виде свойств чисел.
Алгебра рассматривает абстрактные переменные величины и в отвлеченном виде, изучает различные законы их взаимосвязи, которые на математическом языке называются функциональными зависимостями, или функциями. Свободное владение техникой построения графиков функций часто помогает решать многие задачи и порой является единственным средством их решения. График и есть изображение нашего понимания того, как ведет себя функция. Для этого необходимо знать элементарные функции, их свойства, владеть методикой построения графиков. А также необходимо знать каким образом можно, преобразовывать графики функций. Все вышесказанное определяет актуальность рассмотрения данной темы.
Объект исследования: преобразование графиков функций.
Предмет исследования: применение правил преобразования графиков функций для решения алгебраических задач.
Цель курсовой работы: обобщить, систематизировать и расширить знания и умения по построению графиков различных функций в прямоугольно-декартовой системе координат, их преобразованию.
Исходя из цели ставим следующие задачи:
1) рассмотреть методы построения графиков функций, опирающиеся на простейшие приемы (растяжение, сжатие, параллельный перенос, симметрию).
2) систематизировать приемы построения графиков.
3) показать их применение при построении:
графиков сложных функций;
Курсовая работа состоит из введения, двух глав, заключения и списка литературы. В первой главе приводятся теоретические основы преобразований графиков функций. Во второй главе рассмотрим основные правила преобразования графиков на примерах элементарных функций, а также построение графиков функций y=|f(x)|, y=f(|x|) и обратной функции.
Глава 1. Теоретические основы преобразований графиков функций
1.1. Параллельный перенос
Пусть имеется график функции y = f ( x ). Зададимся целью построить график функции y = f 1 ( x ), где f 1 ( x ) = f ( x ) + B . Ясно, что области определения этих функций совпадают. Пусть A ( x 0 ; y 0 ) — точка на графике функции y = f ( x ). Соответствующая ей точка A ′ ( x 0 ; y 1 ) с той же абсциссой имеет координаты A ′ ( x 0 ; y 0 + B ). Точка A ′ получается из точки A сдвигом на B вертикально вверх, если B > 0, и на | B | вниз, если B < 0.
Обобщая это рассуждение на все точки, приходим к выводу, что график функции y = f ( x ) + B получается из графика функции y = f ( x ) параллельным переносом вдоль оси OY на B вверх, если B > 0, и на | B | вниз, если B<0.
Алгебраически для каждой точки графика это можно записать системой
где x и y — координаты какой-либо точки старого графика, x ′ и y ′ — соответствующей ей точки нового.
Аналогичным образом можно построить график функции y = f ( x — b ). Точка A ′ ( x ′; y ′) нового графика имеет такую же ординату, как и точка A (x ; y ), если x ′ = x + b . Таким образом, чтобы построить точку A ′, нужно сместить точку A вправо, если b > 0, и влево, если b < 0.
Рассмотрим параллельный перенос графиков.
График функции y = f ( x — b ) получается из графика функции y = f ( x ) параллельным переносом вдоль оси OX на b вправо, если b > 0, и на | b | влево, если b < 0.
Алгебраически это записывается системой:
Область определения функции, соответствующей новому графику, также смещается на a по отношению к области определения функции, задающей старый график.
В общем случае график функции y = f ( x — b ) + B получается из графика функции y = f ( x ) параллельным переносом, при котором начало координат O (0, 0) переходит в точку O ′ ( b , B ). Обычно находят точку O ′ и проводят через нее вспомогательные координатные оси, относительно которых строят график функции y = f ( x ).
Приведем несколько примеров:
1.2. Растяжение и сжатие
Сжатие (растяжение) графика к оси OX задается с помощью системы уравнений.
График функции y = A f ( x ) получается из графика функции y = f ( x ) растяжением в A раз от оси OX при A > 1 и сжатием в раз к оси OX при 0 < A <1.
Рассмотрим сжатие и растяжение графиков.
При A = 1 исходный и конечный графики совпадают. При A < 0 график не только растягивается (сжимается), но и отражается относительно оси OX .
Аналогичным образом задается сжатие (растяжение) графика к оси OY :
График функции y = f ( a x ) получается из графика функции y = f (x) сжатием в a раз к оси OY при a > 1 и растяжением в раз от оси OY при 0 < a < 1.
При a = 1 исходный и конечный графики совпадают. При a < 0 график не только растягивается (сжимается), но и отражается относительно оси OY .
1.3. Преобразования графика с модулем.
1.3.1. Построение графика функции y=|f(x)|
Преобразования графика с модулем | |
y = | f(x) | |
|
График функции получается из графика функции y=f(x) следующим образом: часть графика функции y=f(x), лежащая над осью Ох и на оси, остается без изменений, а часть графика, лежащая под осью Ох, отражается симметрично относительно оси Ох на верхнюю полуплоскость. Приведем примеры :
1.3.2 Построение графика функции y= f(|x|)
Преобразования графика с модулем | |
y = f( | x |) |
|
График функции получается из графика функции y=f(x) следующим образом: часть графика функции y=f(x), соответствующая неотрицательным значениям аргумента , остается без изменений, а отрицательным значениям аргумента будет соответствовать график, полученный путем симметричного относительно оси Оy отображения части графика, оставленной без изменений. Функция является четной (ее график симметричен относительно оси у). Ниже приведены примеры:
1.5.Общий вид функций
Общий вид функции | Преобразования |
Параллельный перенос графика вдоль оси абцисс на единиц
| |
Параллельный перенос графика вдоль оси ординат на единиц
| |
Симметричное отражение графика относительно оси ординат. | |
Симметричное отражение графика относительно оси абсцисс. | |
| |
| |
| |
|
1.6.Построение графика функций с помощью преобразования
Во многих случаях графики функций могут быть построены путем некоторых преобразований уже известных графиков других функций более простого вида. График функций вида:
y=Af(a x+b)+B
может быть получен из графика функций y=f(x) при помощи следующих преобразований:
1. а) Осевой симметрии относительно оси 0 X;
б) осевой симметрии относительно оси0Y;
в)центральной симметрии относительно начала координат точки0;
2. а) Параллельного переноса (сдвига) вдоль оси 0X ;
б) параллельного переноса (сдвига) вдоль оси 0Y ;
3. а) Растяжения (или сжатия) по направлению оси 0X ;
б) растяжения (или сжатия) по направлению оси 0 Y;
Отметим, что:
1. а) При осевой симметрии относительно оси 0X точка ( x; y ) переходит в точку ( x; -y ) ;
б) При осевой симметрии относительно оси 0Y точка ( x; y ) переходит в точку ( -x; y ) ;
в) При центральной симметрии относительно начала координат ( x; y) переходит в точку ( -x; -y ) ;
2. а) При параллельном переносе вдоль оси 0X точка ( x; y) переходит в точку ( x+a; y) , где а — некоторое число при этом перенос происходит «вправо», если а > 0 , и «влево», если а < 0 ;
б) ) При параллельном переносе вдоль оси 0Y точка ( x; y) переходит в точку ( x; y+b) , где b — некоторое число при этом перенос происходит «вверх», если b > 0 , и «вниз», если b< 0 ;
3. а) При растяжении (сжатии) в p раз ( p>0, p ¹ 1) вдоль оси 0X относительно 0Y точка( x; y) переходит в точку( px; y);
б)При растяжении (сжатии) в q раз ( q>0, q ¹ 1) вдоль оси 0Y относительно 0X точка( x; y) переходит в точку( x; qy);
Глава 2. Примеры преобразований графиков функций
2.1. Преобразование аргумента
1. f(x) f(x+b)
1. Строим график фунции
2. Сдвигаем график фунции вдоль оси ОХ на |b| единиц
- влево, если b>0
- вправо, если b<0
Построим график функции
1. Строим график функции
2. Сдвигаем его на 2 единицы вправо:
2. f(x) f(kx)
1. Строим график фунции
2. Абсциссы точек графика делим на к, ординаты точек оставляем без изменений.
Построим график функции .
1. Строим график функции
2. Все абсциссы точек графика делим на 2, ординаты оставляем без изменений:
3. f(x) f(-x)
1. Строим график фунции
2. Отображаем его симметрично относительно оси OY.
Построим график функции .
1. Строим график функции
2. Отображаем его симметрично относительно оси OY:
4. f(x) f(|x|)
1. Строим график функции
2. Часть графика, расположенную левее оси ОY стираем, часть графика, расположенную правее оси ОY Достраиваем симметрично относительно оси OY:
График функции выглядит так:
Построим график функции
1. Строим график функции (это график функции , смещенный вдоль оси ОХ на 2 единицы влево):
2. Часть графика, расположенную левее оси OY (x<0) стираем:
3. Часть графика, расположенную правее оси OY (x>0) достраиваем симметрично относительно оси OY:
2.2. Построим график функции
y=a x2 +bx+c,
Решение: квадратный трехчлен ax2+bx+c можно записать в виде a(x+(b/2a))2 +(4ac- b2 )/4a . Отсюда видно, что график функции y=a x2 +bx+c, получается из параболы y= x2по следующей схеме:
x2 ® a x2 ® a x2 +(4 ac — b2 )/4a ® a(x+b/(2a)) 2 +(4ac- b2 )/4a
т.е. для построения графика y=a x2 +bx+c надо:
1. Растянуть в | а | раз, если | а | >1 (сжать |1/ а | раз, если | а | < 1 ), вдоль оси 0X график функции y= x2(с возможным последующим отображением полученного графика функции y= |a |x2относительно оси 0Y , если а < 0 ).
2. Параллельно перенести вдоль оси 0Y на отрезок длины |(4 ac- b2 )/4a | вверх (вниз) график функции y=a x2, если величина (4 ac- b2 )/4a положительна (отрицательна).
3. Полученный после предыдущего преобразования график параллельно перенести вдоль оси 0X на отрезок длины | b/2a | вправо, если b/2a<0 , и влево, если b/2a>0 .
2.3. Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)
Заключение
Мы видим, что правила преобразования графиков существенно упрощают построение графиков сложных функций. Помогают найти нетрадиционное решение сложных задач.
После проделаной работы я пришла к выводу:действительно, зная основные методы преобразования графиков функций можно съэкономить время на их построение.
В результате написания курсовой работы мы обобщили, систематизировали и расширили знания и умения по построению графиков различных функций в прямоугольно-декартовой системе координат, их преобразованию.
Список литературы
1. Бурмистрова Н.В., Старостенкова Н.Г. Функции и их графики. Учебное пособие. — Саратов: Лицей, 2003.
2. Бурмистрова Н.В., Старостенкова Н.Г. Функции и их графики. Учебное пособие. — Саратов: Лицей, 2003.
3. Дорофеев Г.В. и др. Математика: Алгебра. Функции. Анализ данных. Учебник для 9 класса общеобразовательных учреждений — М.: Просвещение, 2005.
4. Ивлев Б.М., Абрамов А.М., Дудницын Ю.П., Шварцбурд С.И. Задачи повышенной трудности по алгебре и началам анализа. Учебное пособие для 10-11 классов сред. школ. — М.: Просвещение, 1990.
5. Ивлев Б.М., Абрамов А.М., Дудницын Ю.П., Шварцбурд С.И. Задачи повышенной трудности по алгебре и началам анализа. Учебное пособие для 10-11 классов сред.школ.-М.: Просвещение, 1990.
6. Мордкович А.Г. Алгебра 7, 8, 9 класс. В двух частях. Учебное пособие для общеобразовательных учреждений — М.: Мнемозина, 2004.
7. Мордкович А.Г. Алгебра 7, 8, 9 класс. В двух частях. Учебное пособие для общеобразовательных учреждений — М.: Мнемозина, 2004.
8. Нелин Е.П. Алгебра в таблицах. Харьков: Мир детства, 2001.
9. Полный интерактивный курс «Функции и графики» для учащихся школ, лицеев, гимназий. ООО «Физикон», 2003.
Источник